

Peter Baumann, Georgi Chulkov

Web Coverage Processing Service
(WCPS)
Implementation Specification

Technical Report No. 9
July 2007

School of Engineering and Science

 p. i

Web Coverage Processing Service (WCPS)
Implementation Specification

Peter Baumann, Georgi Chulkov
School of Engineering and Science
Jacobs University Bremen gGmbH
Campus Ring 1
28759 Bremen
Germany
E-Mail: p.baumann@jacobs-university.de, g.chulkov@jacobs-university.de
http://www.jacobs-university.de/

Summary
The Open GeoSpatial Consortium (OGC) is the main driving force for open, interop-
erable service interfaces for geospatial information. To serve this mission, OGC de-
velops and maintains a family of modular standards. The historically main standard
for multi-dimensional raster data is the Web Coverage Service (WCS) Implementa-
tion Specification which defines basic access functionality on server-stored raster data
(aka “coverages”).

During the development of WCS several requests have came up to add this or that
processing functionality. It was decided, however, to keep WCS basic in its function-
ality and rather have a separate, WCS-related standard which allows users to compose
their own functions without complexity restrictions – in short: to develop a standard
offering a raster processing language.

The pertaining specification is the Web Coverage Processing Service (WCPS) Im-
plementation Specification which is currently under development within OGC, by a
working group initiated and led by Jacobs University Bremen. WCPS provides access
to original or derived sets of geospatial coverage information, in forms that are useful
for client-side rendering, input into scientific models, and other client applications. As
such, WCPS includes WCS functionality and extends it with an expression language
to form requests of arbitrary complexity allowing, e.g., multi-valued coverage results.

The official status of WCPS within OGC is that of a Best Practice document (docu-
ment no. 06-035r1), ie., an official recommendation by OGC. The report on hand pre-
sents an advanced WCPS specification version, which is considered complete and
consistent enough to present it for public discussion and, finally, decision on becom-
ing an accepted OGC standard.

 p. ii

Contents

1 Introduction v
2 Coverage Relevant OGC Services vi
2.1 WCS vii
2.2 WPS viii
2.3 SWE viii
2.4 Comparative Synopsis viii
3 WCPS Requirements ix
4 Implementation x
5 Conclusion and Future Work xi
Report References xii
1 Scope 1
2 Conformance 2
3 Normative references 2
4 Terms and definitions 3
5 Conventions 4
5.1 Symbols (and abbreviated terms) 4
5.2 UML notation 4
5.3 Platform-neutral and platform-specific specifications 4
5.4 Data dictionary tables 4
6 Basic service elements 6
6.1 Introduction 6
6.2 Version numbering and negotiation 6
6.2.1 Version number form 6
6.2.2 Version changes 6
6.2.3 Appearance in requests and in service metadata 6
6.2.4 Version number negotiation 6
6.3 General HTTP request rules 7
6.3.1 Overview 7
6.3.2 Key-value pair encoding (GET or POST) 8
6.3.3 XML encoding 9
6.4 General HTTP response rules 9
6.5 Service exceptions 10
7 Conceptual coverage model 11
7.1 Overview 11
7.2 Coverage model 11
7.2.1 Coverages 11
7.2.2 Axes 11
7.2.3 Locations 12
7.2.4 Domain 12
7.2.5 Range values and types 13
7.2.6 Null and interpolation 14

 p. iii

7.3 Coverage probing functions 14
7.4 Restrictions relative to WCS coverage model 16
7.5 Extensions relative to WCS coverage model 17
7.6 WCS compatibility statement 18
8 GetCapabilities operation 19
9 DescribeCoverage operation 20
10 ProcessCoverage operation 21
10.1 Introduction 21
10.2 WCPS expression language specification 21
10.3 ProcessCoverage abstract request syntax 22
10.3.1 Overview 22
10.3.2 coverageListExpr 22
10.3.3 processingExpr 24
10.3.4 storeCoverageExpr 24
10.3.5 encodedCoverageExpr 24
10.3.6 booleanExpr 25
10.3.7 scalarExpr 25
10.3.8 getMetaDataExpr 25
10.3.9 setMetaDataExpr 26
10.3.10 coverageExpr 29
10.3.11 coverageIdentifier 29
10.3.12 inducedExpr 30
10.3.13 unaryInducedExpr 30
10.3.14 unaryArithmeticExpr 31
10.3.15 trigonometricExpr 32
10.3.16 exponentialExpr 34
10.3.17 boolExpr 35
10.3.18 castExpr 37
10.3.19 fieldExpr 38
10.3.20 binaryInducedExpr 39
10.3.21 rangeConstructorExpr 44
10.3.22 subsetExpr 46
10.3.23 trimExpr 46
10.3.24 extendExpr 48
10.3.25 sliceExpr 49
10.3.26 scaleExpr 51
10.3.27 crsTransformExpr 53
10.3.28 coverageConstExpr 55
10.3.29 coverageConstructorExpr 56
10.3.30 condenseExpr 58
10.3.31 generalCondenseExpr 58
10.3.32 reduceExpr 60
10.4 Expression evaluation 61
10.4.1 Evaluation sequence 61
10.4.2 Nesting 62
10.4.3 Parentheses 62
10.4.4 Operator precedence rules 62
10.4.5 Range type compatibility and extension 63
10.4.6 Evaluation exceptions 64
10.5 ProcessCoverage encoding 64

 p. iv

10.5.1 Request encodings 64
10.5.2 Response encodings 66

 p. v

1 Introduction
Increasingly raster data are becoming integral component of geo services, since to-
day’s hardware and software technology is powerful enough to allow online access
even to objects of Terabyte to Petabyte size. Following commercial service offerings
such as GlobeXplorer (www.globexplorer.com) and scientific portals like NASA’s
WorldWind (worldwind.arc.nasa.gov), GoogleEarth has brought the final public
breakthrough for navigational services on large-scale earth observation imagery.

Actually, 2-D imagery is but the tip of the iceberg - the general concept of multi-
dimensional spatio-temporal raster data covers 1-D sensor time series, 2-D imagery,
3-D image time series (x/y/t) and exploration data (x/y/z), 4-D climate models (x/y/z/t),
and many more. Data sizes frequently are extremely high, amounting to multi-
Terabyte volumes for single objects. Hence, truly comprehensive services should in-
clude multi-dimensional objects.

Another logical next step from standalone geo Web services are interoperable, com-
munity-sharable archive networks, and this raises the question of standardised access
interfaces.

The Open GeoSpatial Consortium (OGC, www.opengeospatial.org) is the main driv-
ing force in standardizing interoperable geo services. It does so in close collaboration
with relevant players in the field, such as ISO, OASIS, W3C, and geo domain bodies
like EPSG and IUGS. OGC’s approach is to establish a modular family of geo service
standards, each one addressing a particular technological or geo-scientific application
scenario. Aside from metadata and vector data, raster data obviously play an impor-
tant role.

The term “coverage”, in OGC [7] and ISO [6] definition, denotes “space-varying
phenomena” – a definition which is rather general, ranging from regular grids to tri-
angulated irregular networks (TINs) and beyond. In practice, however, all coverage-
related specifications exclusively address raster data. We follow this focus for the
purpose of this paper, defining raster data as any (usually, but not exclusively) spatio-
temporal phenomenon which consists of sampled values aligned on a regularly spaced
grid.

Access to spatio-temporal coverage data in OGC is being addressed in a dedicated
manner by the Web Coverage Service (WCS) Implementation Specification [4]. Basi-
cally, WCS supports a fixed set of functions which can be invoked in a request: spa-
tial, temporal, and band subsetting, scaling, reprojection, and final result packaging,
including data format encoding.

The OGC WCS Revision Working Group (WCS.RWG) during its work on improv-
ing, refining, and extending WCS has been confronted with several requests for add-
ing some domain-specific functionality. For example, derivation of the Normalized
Difference Vegetation Index (NDVI) is mathematically well defined on some hyper-
spectral earth observation image a containing a red (red) and a near-infrared (nir)
channel:

NDVI(a) = (a. nir – a.red) / (a.nir + a.red)

 p. vi

The result is an image showing, per pixel, a vegetation indicator ranging from -1 to
+1; the closer the value is to +1, the higher the vegetation indication is. Obviously it is
possible to dynamically derive the NDVI from a given suitable coverage.

Still, the WCS.RWG refused to include such operations with two reasons: adding fur-
ther functions beyond the fixed basic set would complicate the WCS interface specifi-
cation for both client and server implementation significantly. Further, the list of fea-
sible functions is unlimited, and there is no coherent concept for structuring them in a
meaningful way for applications – in other words, the result would be an unmanage-
able, hard to understand, arbitrary conglomerate of functions.

Instead, the approach has been taken to implement a coverage processing language
which allows to express algorithmically well-defined operations through one coher-
ent, extensible concept. This language is defined over the coverage model and, hence,
extends WCS in a compatible manner. The corresponding standard in spe is the Web
Coverage Processing (WCPS) Implementation Specification. WCPS supports retrieval
of multi-dimensional coverage data with spatial, temporal, and non-spatiotemporal
(“abstract”) semantics. WCPS expressiveness is suitable for server-side navigation,
portrayal, analysis, and processing.

This report incorporates the current state of the WCPS specification document. The
author of the WCPS specification is active member of the OGC WCS Revision Work-
ing Group, Chair of the WCPS Working Group, and Co-Chair of the Coverages
Working Group.

As an official OGC document, a specification must adhere to a given structure which
is largely followed also in this report. What has been left out here is the OGC docu-
ment headers, most of the appendices, and the XML schema which is contained in
separate files available, e.g., from the EarthLook website (www.earthlook.org). On
the other hand, a wrapper has been added to make this report fully self-contained.

The resulting report structure is as follows. In the subsequent Section 2 we briefly
characterize some relevant OGC standards. In Section 3 we summarise the require-
ments on WCPS. In Section 4 we briefly describe the WCPS service stack of the ref-
erence implementation under development by Jacobs University Bremen. Section 5
concludes the report wrapper. Subsequently, the WCPS specification text follows in
its entirety, with numbering restarted to keep consistent with the twin document
posted at the OGC portal. The reader is assumed to be familiar with WCS [4] on
whose concepts and terminology WCPS build.

2 Coverage Relevant OGC Services
Traditionally, services providing access to spatio-temporal coverages in OGC have
been addressed by the Web Coverage Service (Whiteside, Evans 2006). More re-
cently, the Web Processing Service and the Sensor Web Enablement have joined. We
briefly relate these three specifications.

 p. vii

2.1 WCS
The WCS 1.1 document [4] specifies that “A Web Coverage Service (WCS) describes
and delivers multidimensional coverage data over the World Wide Web. This version
of the Web Coverage Service is limited to describing and requesting grid (or "sim-
ple”) coverages.” The WCS coverage model defines coverages as bearing a locally
unique name, the multi-dimensional data array itself, plus some technical metadata
needed for coverage description and evaluation. The data array can be of 2, 3, or 4
dimensions, containing mandatory x and y axes and optional z and t axes. The array’s
spatio-temporal extent, its domain, consists of lower and upper limits per axis, ex-
pressed in some coordinate system. Each coverage has a list of coordinate reference
systems associated in which it can be queried; requesting values in another geo-
graphic coordinate system than the one in which it is stored (or in the image coordi-
ante system, directly using pixel coordinates) obviously will involve reprojection.

A coverage may use null values to denote pixel values that are unknown, undefined,
or similar. To this end, a coverage knows one or more null values.

When scaling or reprojection are involved, usually resampling and interpolation have
to be applied in the course of request evaluation. As several different interpolation
methods are in common use among the perceived user communities, the WCS cover-
age model contains a list of interpolation method (one of them being distinguished as
the default) from which a request can choose one to be applied. The current list of
possible interpolation methods is none, nearest [neighbor], linear, quadratic, cubic.
The effect of null values on interpolation can be controlled via the so-called null re-
sistance parameter.

The common request structure for OGC standards, which WCS follows, is that a cli-
ent first issues a GetCapabilities request to learn about a service’s offerings and capa-
bilities. Subsequently, the client performs retrieval based on this information. As a
particularity of WCS, the GetCoverage request allows for such retrieval. In addition, a
DescribeCoverage request is foreseen which delivers details information about cover-
ages, as the WCS GetCapabilities request essentially only lists the coverages offered.
Requests can be phrased as HTTP GET using key-value pair notation or as HTTP
POST requests using XML syntax based on XML Schema definitions being part of
the standard.

GetCoverage offers a fixed set of operations which can be combined in a request.
These operators allow for spatial, temporal, and band subsetting, scaling, reprojection,
and final result packaging, including data format encoding.

The following example shows a GetCoverage request against some satellite image
time series coverage ModisCube, expressed in key-value pair notation:

http://myServer/wcsServlet?
 VERSION=1.1.0 & SERVICE=WCS & REQUEST=GetCoverage &
 COVERAGE=ModisCube &
 RANGESUBSET=nir;red
 SRS=EPSG:31464 &
 BBOX=4636000.0,5717000.0,4687000.0,5768000.0 & TIME=max &
 WIDTH=246 & HEIGHT=300 & DEPTH=1 &
 FORMAT=HDF-EOS &
 EXCEPTIONS=application/vnd.ogc.se_xml

 p. viii

The request extracts according to the given bounding box expressed in spatial refer-
ence system (SRS) EPSG:31464 and taking the most recent time slice of the cube.
The result is scaled to 246x300 pixel and delivered in the HDF-EOS format. Any
eventual error is to be reported back in XML.

2.2 WPS
The Web Processing Service (WPS) [4] allows wrapping any program interface into a
SOAP-based XML structure; as such, WPS might be characterized as “geo SOAP”.
This approach is general enough to allow modeling of any kind of geo service. On the
downside, its specification covers only the function signature (name and parameters)
whereas the semantics is laid down in the fulltext description of the title and abstract
field, hence it can only be interpreted by humans and is not machine-readable. This
lack of built-in explicit semantics makes WPS difficult to employ for Semantic Web
services and to introduce automatic service distribution and composition. WCPS, on
the other hand, has a well-defined machine-understandable semantics which allows
for such techniques.

2.3 SWE
The recently standardized Sensor Web Enablement (SWE) [4] standards group is
emerging, with its sub-standards for Observation and Measurements, SensorML,
TransducerML, Sensor Observation Service (SOS), Sensor Alert Service (SAS), Sen-
sor Processing Service (SPS), and Web Notification Services (WNS). The term „sen-
sor“ is understood in a rather generic way encompassing, among others, cameras on
board a satellite. With this perception WCS and SWE begin to overlap, and conse-
quently harmonization of the standards is on the agenda of the resp. working groups
now.

2.4 Comparative Synopsis
While traditionally the distinction between raster data (such as satellite images and
elevation data) and sensors (delivering 1-D time series like water temperature or pol-
lution indicators at one particular point of measurement) was felt to be clear, this dis-
tinction is breaking up recently. On the one hand, WCS, by extending its range of
dimensionalities covered, tends to not exclude the 1-D case; on the other hand, sensor
services more and more are understood to also include, for example, remote sensing
instruments, which naturally leads to spatio-temporal data beyond 1-D.

Simultaneously with the growing outreach of OGC standards new requirements
emerge from further communities which tend to be interested in Web-based geo ser-
vices. An obvious extension is from traditional mapping (i.e, geodesy) into the com-
plete range of earth sciences, incorporating geophysics, geochemsitry, and climate
modeling, among many others. Not so obvious, but foreseeable already is the inclu-
sion of domains, which per se have no connection with geo sciences, but use geo-
referenced data and, hence, need to integrate geographic data with their domain-
specific information. As an example, OLAP / data warehousing dealing with business
data analysis using multi-dimensional statistics may include geographid and demo-
graphic data in their analysis data set.

 p. ix

3 WCPS Requirements
Design of WCPS has been accomplished with several goals in mind, integrating best-
practice knowledge from the fields of GIS technology, databases, programming lan-
guages, Web services, and imaging, among others. This has led to the following set of
core requirements.

From a software engineering viewpoint, a standard defining the interface between
clients and servers coming from independent developers needs to be concise, unambi-
guous, and understandable. This calls for a formal specification of the language’s syn-
tax and semantics. Notably this collides with the requirement of understandability of
the service by implementers and service providers/users which do not have a high
working knowledge of formal specifications – actually, the majority of the target
group. The WCPS specification attempts a reasonable compromise between the rigid-
ity of a formal specification and the understandability of a loose textual presentation.
Examples have been added with each construct to aid understanding, and tutorial ma-
terial is under development in parallel (to be made available via the EarthLook web-
site, www.earthlook.org).

From a database viewpoint, the language in particular should offer declarativeness,
data independence, optimizability, and it should be safe in evaluation [8]. A query
language is said to be declarative if queries phrased in it describe the result structure,
rather than specifying the algorithms to be executed for obtaining such results (what
do I want vs. how is it computed). The maybe best known delcarative language is
SQL [8]. Data independence decouples processing functionality from data and storage
structures; this not only has proven advantageous for human readability of the lan-
guages, but moreover is generally recognized as being an indispensable prerequisite
for the next requirement: Optimization of requests means replacing the evaluation
algorithm for a given query by a semantically equivalent, but less costly variant. Op-
timization has a long and successful history in databases; for multi-dimensional raster
data, it has been shown that optimization can improve query response time by orders
of magnitude [11]. A database language which is safe in evaluation allows only those
requests whose evaluation is guaranteed to terminate after a finit number of steps; this
rules out one source of Denial of Service attacks.

From a GIS, imaging, and statistics viewpoint, the expressive power should be suffi-
cient to allow formulation of current algorithms to a large extent. Notably this collides
with the above requirements for declarativeness (many algorithms are formulated only
in a procedural manner) and evaluation safety (with a language powerful enough for
those algorithms termination cannot be guaranteed any longer). In the end, a tradeoff
had to be made which, following established database tradition, ultimately favoured
declarativeness and safety over computational power. This tradeoff is also influenced
by the fact that the WPS standard indeed allows Turing-complete requests (conse-
quently, without being safe in evaluation). Hence, with WCPS and WPS there are two
complementary approaches available to implementers and service providers.

While raster processing languages exist in commercially available desktop products
since long, such as MatLab (www.mathworks.com) and IDL On The Net
(www.ittvis.com/ion), there is no such language available which fulfils all of the
above requirements. The language which, to the best of our knowledge, comes closest
to the envisaged goal is the rasdaman Array Algebra [2] and query language [10];

 p. x

actually, rasdaman has very much influenced the design of WCPS and is being used
for the reference implementation.

4 Implementation
In parallel to the specification of WCPS a reference implementation is pursued to en-
sure feasibility of the WCPS concepts and also to have some showcasing tools for
promoting the standard in spe [5]. At the same time, the outcome is intended to be-
come the reference implementation, continuously maintained and developed further
by Jacobs University.

The service stack (Figure 2) consists of the WCPS interface implemented by a Java
servlet, the rasdaman array server middleware, and a relational DBMS holding the
raster data. The Java servlet accepts WCPS requests adhering to the WCPS XML
schema specification, and returns the responses. Coverage results consist of an XML
document accompanied by binary coverage data in the requested encoding format,
encapsulated within a multipart/mixed HTTP response. This format allows on princi-
ple even a web browser to be used as a client, by uploading an XML request directly
to the web service. Non-coverage results can be shipped back directly within the
XML response.

The WCPS component translates a request into rasdaman's query language, rasql [10],
and hands this to rasdaman for processing. The results obtained from rasdaman are
MIME-encoded and shipped back to the client, together with the XML-encoded mani-
fest describing them.

The rasdaman (“raster data manager”) raster server extends standard relational data-
bases with multidimensional raster data of unlimited size [1], [3]. Its query language,
rasql, extends standard SQL with a raster language. Rasql expressions are optimized
on server side and executed against the database where the raster objects are stored
partitioned in sets of blobs (binary large objects). The relational database, then, for a
Terabyte-size raster objects holds a million blobs of about a Megabyte size each – a
value which has proven suitable for high request throughput.

Rasdaman on principle can plug into virtually any database system and is commer-
cially operational on top of Oracle, Informix, DB2, and PostgreSQL. For the purpose
of the WCPS development the open-source system PostGreSQL is used which has
proven competitive indeed against its commercial counterparts.

 p. xi

Figure 2
WCPS reference implementation architecture and technology used

5 Conclusion and Future Work
Web-based analysis and processing of large raster archives is an emerging technol-
ogy, and developing an open, unifying standard in this early phase is expected to
comprise guidelines to vendors and ultimately lead to high-value, interoperable prod-
ucts.

WCPS attempts to provide an open-ended framework for submitting requests of
unlimited complexity for processing on server-side and returning only the results, by
doing so in a formally defined behavior. The design of WCPS actually embodies the
long-standing experience with the rasdaman array DBMS in its applications as geo
raster server, hence we are confident about feasibility of WCPS. Still, there is a need
for in-depth evaluation and assessment unde real-life conditions in as many applica-
tion domains (and combinations thereof) as possible.

Future work is characterized by the evolution of the standards, and by gaining more
experience by setting up real-life services. At the time of this writing, WCPS has
reached a first stable state. WCS is in the transition from version 1.1 to version 1.2; as
WCPS relies on the concepts of WCS (in aprticular: its conceptual coverage model),
this will require continuous adaptation of WCPS to the latest WCS version to main-
tain lock-step synchronization. In the course of WCS restructuring into a core docu-
ment as the basis and add-on plus application profile specifications on top of it,
WCPS will become an add-on to WCS in terms of the specification document struc-
ture.

Among the missing elements of the WCS specification is a comprehensive Con-
formance Clause, best based on a testbed implementation.

In the course of the EarthLook project (www.earthlook.org) a realistic WCPS demon-
stration scenario is being set up; exposing this to real-life users is expected to give
further insights and will probably raise new questions.

 p. xii

On the conceptual side as well regarding implementation further studies are required.
Issues in the domain of array databases, such as advanced optimization, paralleliza-
tion, and intelligent service distribution are on the research agenda.

Report References
[1] P. Baumann: On the Management of Multidimensional Discrete Data. VLDB

Journal 4(3)1994, Special Issue on Spatial Database Systems, pp. 401-444

[2] P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond.
Proc. Next Generation IT and Systems (NGITS), Zikhron Yaakov, Israel, 1999,
pp. 76 - 93

[3] P. Baumann: Large-Scale Raster Services: A Case for Databases. Invited key-
note, 3rd Intl Workshop on Conceptual Modeling for Geographic Information
Systems (CoMoGIS), Tucson, USA, 6 - 9 November 2006. In: John Roddick et
al (eds): Advances in Conceptual Modeling - Theory and Practice, pp. 75 - 84

[4] Botts, M., Robin, A., Davidson, J., Simonis, I. (eds.): Sensor Web Enablement
Architecture. OGC document 06-021r1, 2006

[5] G. Chulkov: Architecture and Implementation of a Web Coverage Processing
Service Suing a Database Backend. Bachelor Thesis, Jacobs University Bremen,
May 2006

[6] ISO TC211: Geographic information – Schema for coverage geometry and func-
tions. ISO DIS 19123, TC 211/SC/WG 2, 2002

[7] C. Kottman: OGC Abstract Specification Topic 6: The Coverage Type and its
Subtypes. OGC document 00-106, 2000

[8] H.G. Molina, J. Ullman, J. Widom: Database System Implementation. Prentice
Hall 2000

[9] n.n.: Web Processing Service. OGC document 05-007r4, 2005

[10] n.n.: Rasql Query Language Guide. Rasdaman GmbH, 2001

[11] R. Ritsch: Optimization and Evaluation of Array Queries in Database Manage-
ment Systems. PhD Thesis, Technische Universität München, 1999

 p. 1

OpenGIS Interface:
Web Coverage Processing Service (WCPS)

1 Scope
This document specifies how a Web Coverage Processing Service (WCPS) allows to
describe, request, and deliver multi-dimensional grid coverage data over the World
Wide Web.

Grid coverages have a domain comprised of regularly spaced locations along an arbi-
trary number of axes. Specific semantics is associated with spatio-temporal axes; A
coverage can optionally have an x axis, a y axis (which, if both present and equipped
with a coordinate reference system, shall bear a common coordinate reference sys-
tem), a time axis, and an elevation axis. A coverage’s grid point (i.e., cell) data types
define, at each location in the domain, either a single (scalar) value (such as eleva-
tion), or an ordered series of values (such as brightness values in different parts of the
electromagnetic spectrum).

Result coverages can be transmitted directly or made available for download by URLs
communicated to the client.

The Web Coverage Processing Service provides three operations: GetCapabilities,
DescribeCoverage, and ProcessCoverage. The GetCapabilities operation, like in
WCS, returns an XML document describing the service and brief descriptions of the
data collections from which clients may request coverages; additionally WCPS spe-
cific processing service capabilities are delivered. Clients would generally run the
GetCapabilities operation when opening a session with some particular server and
cache its result for use throughout the session.

Like in WCS, the DescribeCoverage operation lets clients request a full description of
one or more coverages served by a particular WCPS server. The server responds with
an XML document that fully describes the identified coverages.

The ProcessCoverage operation allows to process and analyse coverages and cover-
age sets stored on the server as well as to extract information – both grid data and
metadata – from coverages. To this end, requests are phrased in a formally defined
processing language which supports coverage expressions of unlimited complexity.
Result coverages can be transmitted directly back to the client or made available for
download by URLs communicated to the client.

Coverages advertised by a service can be stored on the corresponding server, but the
service may well itself rely on external data sources to substantiate the portfolio. In
any case, the appearance towards the service clients always is one homogeneously
accessible coverage offering.

 p. 2

For future versions it is intended, to extend WCPS to incorporate further coverage
types defined in the OpenGIS Abstract Specification (Topic 6, "The Coverage Type",
OGC document 00-106), in synchronization with WCS.

2 Conformance
Conformance with this OGC Implementation Specification may be checked using all
the relevant tests specified in Annex D.

3 Normative references
The following normative documents contain provisions that, through reference in this
text, constitute provisions of this specification. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
<http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J.,
Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T., eds.,
<http://www.ietf.org/rfc/rfc2616.txt>

IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URI): Generic Syntax,
Berners-Lee, T., Fielding, N., and Masinter, L., eds.,
<http://www.ietf.org/rfc/rfc2396.txt>

ISO 19105: Geographic information — Conformance and Testing

ISO 19123, Geographic Information — Coverage Geometry and Functions

OGC 02-023r4, OpenGIS Geography Markup Language (GML) Implementation
Specification, v3.00 <http://www.opengis.org/techno/documents/02-023r4.pdf>

OGC AS 0, The OpenGIS Abstract Specification Topic 0: Overview, OGC document
99-100r1 <http://www.opengis.org/techno/abstract/99-100r1.pdf>

OGC AS 12, The OpenGIS Abstract Specification Topic 12: OpenGIS Service Archi-
tecture (Version 4.2), Kottman, C. (ed.), <http://www.opengis.org/techno/specs.htm>

OGC 05-096r1, GML 3.1.1 grid CRSs profile, v1.0.0,
<http://portal.opengeospatial.org/files/?artifact_id=13205>

XML 1.0, W3C Recommendation 6 October 2000, Extensible Markup Language
(XML) 1.0 (2nd edition), World Wide Web Consortium Recommendation, Bray, T.,
Paoli, J., Sperberg-McQueen, C.M., and Maler, E., eds.,
<http://www.w3.org/TR/2000/REC-xml>

 p. 3

W3C Recommendation 2 May 2001: XML Schema Part 0: Primer,
<http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/>

W3C Recommendation 2 May 2001: XML Schema Part 1: Structures,
<http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/>

W3C Recommendation 2 May 2001: XML Schema Part 2: Datatypes,
<http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/>

4 Terms and definitions
For the purposes of this document, the terms and definitions given in the above refer-
ences (in particular: WCS [4]) apply, and additionally the following terms.

4.1
axis
a totally ordered set of values which can be used for coordinate referencing in a cov-
erage. A coverage may have any number of axes, of which a subset may carry spatio-
temporal semantics as defined in WCS [4]. Axes without spatial or temporal seman-
tics are called “abstract”.

4.2
bounding box
the extent of a coverage, consisting of the spatio-temporal bounding box as defined in
WCS [4] plus optional abstract dimension extents.

4.3
cell
a data element of a coverage which is uniquely identified by its grid point coordinate,
i.e., its spatio-temporal position; each cell within a coverage’s bounding box contains
a value of the structure specified in the coverage’s range definition. Depending on the
application, cells commonly are also known as “pixel”, “voxel”, etc.

4.4
domain
the extent of a coverage, defined by its lower and upper bound per axis. The domain
concept basically is used as defined by WCS, with two modifications: firstly spatial
and temporal axes are optional, and secondly any number of abstract axes can appear.

whereby axes with a geo semantics have geographic coordinates, a time axis has time
coordinates. Both spatial and temporal axes are optional in a WCPS coverage.

4.5
general domain
the extent of a WCPS coverage, which can have both spatio-temporal and abstract
axes. Spatial, temporal, and abstract axes all are optional in a WCPS coverage, as
long as the coverage has at least one axis.

 p. 4

4.6
identifier
a string, acting as an identifier in some context, which shall adhere to the specifica-
tion of the syntax element “identifier” defined in Annex A.1.

5 Conventions

5.1 Symbols (and abbreviated terms)

Most of the abbreviated terms listed in Subclause 5.1 of the OWS Common Implementa-
tion Specification [OGC 05-008] also apply to this document.

Further, this document assumes familiarity with the terms and concepts of the Web Cov-
erage Service Implementation Specification [4].

5.2 UML notation

All the diagrams that appear in this specification are presented using the Unified Model-
ing Language (UML) static structure diagram, as described in Subclause 5.2 of the OGC
Web Services Common Implementation Specification [OGC 05-008].

5.3 Platform-neutral and platform-specific specifications

As specified in Clause 10 of OGC Abstract Specification Topic 12 “OpenGIS Service
Architecture” (which contains ISO 19119), this document includes both Distributed
Computing Platform-neutral and platform-specific specifications. This document first
specifies each operation request and response in platform-neutral fashion. This is done
using a table for each data structure, which lists and defines the parameters and other data
structures contained. These tables serve as data dictionaries for the UML model in Annex
C, and thus specify the UML model data type and multiplicity of each listed item.

Example Platform-neutral specifications are contained, e.g., in Subclause 10.2.

The specified platform-neutral data could be encoded in many alternative ways, each ap-
propriate to one or more specific DCPs. This document now specifies encoding appropri-
ate for use of HTTP GET transfer of operations requests (using KVP encoding), and for
use of HTTP POST transfer of operations requests (using KVP or XML or SOAP encod-
ing). However, the same operation requests and responses (and other data) could be en-
coded for other specific computing platforms.

Example Platform-specific specifications for KVP encoding are contained, e.g., in Subclause 10.2.5.

Example Platform-specific specifications for XML encoding are contained in Subclause 10.2.6.

5.4 Data dictionary tables

The UML model data dictionary is specified herein in a series of tables. The contents of
the columns in these tables are described in Table 1. The contents of these data dictionary
tables are normative, including any table footnotes.

 p. 5

Table 1 — Contents of data dictionary tables

Column title Column contents

Names
(left column)

Two names for each included parameter or association (or data structure).
The first name is the UML model attribute or association role name.
The second name uses the XML encoding capitalization specified in Subclause
11.6.2 of [OGC 05-008].
Some names in the tables may appear to contain spaces, but no names contain
spaces.

Definition
(second column)

Specifies the definition of this parameter (omitting un-necessary words such as “a”,
“the”, and “is”). When the parameter value is the identifier of something, not a
description or definition, the definition of this parameter should read something
like “Identifier of TBD”.

Data type and value
(third column)
or
Data type
(when no second
items are included in
rows of table)

Normally contains two items:
The mandatory first item is often the data type used for this parameter, using data
types appropriate in a UML model, in which this parameter is a named attribute of
a UML class. Alternately, the first item can identify the data structure (or class)
referenced by this association, and reference a separate table used to specify the
contents of that class (or data structure).
The optional second item in the third column of each table should indicate the
source of values for this parameter, the alternative values, or other value informa-
tion, unless the values are quite clear from other listed information.

Multiplicity and use
(right or fourth col-
umn)
or
Multiplicity
(when no second
items are included in
rows of table)

Normally contains two items:
The mandatory first item specifies the multiplicity and optionality of this parameter
in this data structure, either “One (mandatory)”, “One or more (mandatory)”, “Zero
or one (optional)”, or “Zero or more (optional)”. (Yes, these are redundant, but we
think ISO wants this information.)
The second item in the right column of each table should specify how any multi-
plicity other than “One (mandatory)” shall be used. When that parameter is op-
tional, under what condition(s) shall that parameter be included or not included?
When that parameter can be repeated, for what is that parameter repeated?

When the data type used for this parameter, in the third column of such a table, is an
enumeration or code list, all the values specified by a specific OWS shall be listed, to-
gether with the meaning of each value. When this information is extensive, these values
and meanings should be specified in a separate table that is referenced in the third column
of this table row.

 p. 6

6 Basic service elements

6.1 Introduction
This clause describes aspects of Web Coverage Processing Server behavior (more
generally, of OGC Web Service behavior) that are independent of particular opera-
tions, or that are common to several operations or interfaces.

6.2 Version numbering and negotiation

6.2.1 Version number form
The published specification version number contains three positive integers, separated
by decimal points, in the form "x.y.z". The numbers "y" and "z" will never exceed 99.
Each OWS specification is numbered independently.

6.2.2 Version changes
A particular specification's version number shall be changed with each revision. The
number shall increase monotonically and shall comprise no more than three integers
separated by decimal points, with the first integer being the most significant. There
may be gaps in the numerical sequence. Some numbers may denote experimental or
interim versions. Service instances and their clients need not support all defined ver-
sions, but shall obey the negotiation rules below.

6.2.3 Appearance in requests and in service metadata
The version number appears in at least two places: in the Capabilities XML describ-
ing a service, and in the parameter list of client requests to that service. The version
number used in a client's request of a particular service instance shall be equal to a
version number which that instance has declared it supports (except during negotia-
tion as described below). A service instance may support several versions, whose val-
ues clients may discover according to the negotiation rules.

6.2.4 Version number negotiation
A Client may negotiate with a Service Instance to determine a mutually agreeable
specification version. Negotiation is performed using the GetCapabilities operation
[see Clause 8] according to the following rules.

All Capabilities XML shall include a protocol version number. In response to a Get-
Capabilities request containing a version number, an OGC Web Service shall either
respond with output that conforms to that version of the specification, or negotiate a
mutually agreeable version if the requested version is not implemented on the server.
If no version number is specified in the request, the server shall respond with the
highest version it understands and label the response accordingly.

Version number negotiation occurs as follows:

 p. 7

a) If the server implements the requested version number, the server shall send that
version.

b) If a version unknown to the server is requested, the server shall send the highest
version it knows that is less than the requested version.

c) If the client request is for a version lower than any of those known to the server,
then the server shall send the lowest version it knows.

d) If the client does not understand the new version number sent by the server, it
may either cease communicating with the server or send a new request with a new
version number that the client does understand but which is less than that sent by
the server (if the server had responded with a lower version).

e) If the server had responded with a higher version (because the request was for a
version lower than any known to the server), and the client does not understand
the proposed higher version, then the client may send a new request with a ver-
sion number higher than that sent by the server.

The process is repeated until a mutually understood version is reached, or until the
client determines that it will not or cannot communicate with that particular server.

Example 1 - Server understands versions 1, 2, 4, 5 and 8. Client understands versions 1, 3, 4, 6, and
7. Client requests version 7. Server responds with version 5. Client requests version 4. Server responds
with version 4, which the client understands, and the negotiation ends successfully.

Example 2 - Server understands versions 4, 5 and 8. Client understands version 3. Client requests
version 3. Server responds with version 4. Client does not understand that version or any higher ver-
sion, so negotiation fails and client ceases communication with that server.

The negotiated version parameter shall be supplied with ProcessCoverage requests.

6.3 General HTTP request rules

6.3.1 Overview
At present, the only distributed computing platform (DCP) explicitly supported by
OGC Web Services is the World Wide Web itself, or more specifically Internet hosts
implementing the Hypertext Transfer Protocol (HTTP). Thus the Online Resource of
each operation supported by a service instance is an HTTP Uniform Resource Locator
(URL). The URL may be different for each operation, or the same, at the discretion of
the service provider. Each URL shall conform to the description in [HTTP] but is
otherwise implementation-dependent; only the parameters comprising the service re-
quest itself are mandated by the OGC Web Services specifications.

HTTP supports two request methods: GET and POST. One or both of these methods
may be defined for a particular OGC Web Service type and offered by a service in-
stance, and the use of the Online Resource URL differs in each case.

An Online Resource URL intended for HTTP GET requests is in fact only a URL
prefix to which additional parameters must be appended in order to construct a valid
Operation request. A URL prefix is defined as an opaque string including the proto-
col, hostname, optional port number, path, a question mark '?', and, optionally, one or
more server-specific parameters ending in an ampersand '&'. The prefix uniquely

 p. 8

identifies the particular service instance. For HTTP GET, the URL prefix shall end in
either a '?' (in the absence of additional server-specific parameters) or a '&'. In prac-
tice, however, Clients should be prepared to add a necessary trailing '?' or '&' before
appending the Operation parameters defined in this specification in order to construct
a valid request URL.

An Online Resource URL intended for HTTP POST requests is a complete and valid
URL to which Clients transmit encoded requests in the body of the POST document.
A WCPS server shall not require additional parameters to be appended to the URL in
order to construct a valid target for the Operation request.

6.3.2 Key-value pair encoding (GET or POST)

6.3.2.1 Overview

Using Key-Value Pair encoding, a client composes the necessary request parameters
as keyword/value pairs in the form "keyword=value", separated by ampersands (‘&’),
with appropriate encoding [6] to protect special characters. The resulting query string
may be transmitted to the server via HTTP GET or HTTP POST, as prescribed in the
HTTP Common Gateway Interface (CGI) standard [IETF RFC 2616].

Table 2 summarizes the request parameters for HTTP GET and POST.

Table 2 – Parts of a Key-Value Pair OGC Web Service Request

URL Component Description
http://host[:port]/path URL of service operation. The URL is entirely at the discretion of the

service provider.
{name[=value]&} The query string, consisting of one or more standard request parameter

name/value pairs defined by an OGC Web Service. The actual list of
required and optional parameters is mandated for each operation by the
appropriate OWS specification.

Notes: [] denotes 0 or 1 occurrence of an optional part; {} denotes 0 or more occurrences.

A request encoded using the HTTP GET method interposes a '?' character between the
service operation URL and the query string, to form a valid URI which may be saved
as a bookmark, embedded as a hyperlink, or referenced via Xlink in an XML docu-
ment.

6.3.2.2 Parameter ordering and case

Parameter names shall not be case sensitive, but parameter values shall be case sensi-
tive.

NOTE In this document, parameter names are typically shown in uppercase for typographical
clarity, not as a requirement.

Parameters in a request may be specified in any order.

 p. 9

An OGC Web Service shall be prepared to encounter parameters that are not part of
this specification. In terms of producing results per this specification, an OGC Web
Service shall ignore such parameters.

6.3.2.3 Parameter lists

Parameters consisting of lists shall use the comma (",") as the delimiter between items
in the list.

Example parameter=item1,item2,item3

Multiple lists shall be specified as the value of a parameter by enclosing each list in
parentheses ("(", ")")

Example parameter=(item1a,item1b,item1c),(item2a,item2b)

If a parameter name or value includes a space or comma, it shall be escaped using the
URL encoding rules [6].

6.3.3 XML encoding
Clients may also encode requests in XML for transmission to the server using HTTP
GET or HTTP POST. The XML request shall conform to the schema corresponding
to the chosen operation, and the client shall send it to the URL listed for that opera-
tion in the server’s Getabilities response, in accordance with HTTP POST [7]).

NOTE To support SOAP messaging, clients need only enclose the XML document ogcdoc in a
SOAP envelope as follows:

<env:Envelope xmlns:env="http://www.w3.org/2001/09/soap-envelope">
 <env:Body>
 ogcdoc
 </env:Body>
</env:Envelope>

6.4 General HTTP response rules
Upon receiving a valid request, the service shall send a response corresponding ex-
actly to the request as detailed in the appropriate specification. Only in the case of
Version Negotiation (described above) may the server offer a differing result.

Upon receiving an invalid request, the service shall issue a Service Exception as de-
scribed in Subclause 6.5 below.

NOTE As a practical matter, in the WWW environment a client should be prepared to receive
either a valid result, or nothing, or any other result. This is because the client may itself have formed a
non-conforming request that inadvertently triggered a reply by something other than an OGC Web
Service, because the service itself may be non-conforming, etc.

 p. 10

6.5 Service exceptions
Upon receiving an invalid request, the service shall issue a Service Exception XML
message to describe to the client application or its human user the reason(s) that the
request is invalid.

Service Exception XML shall be valid according to the Service Exception XML
Schema in Subclause B.6. In an HTTP environment, the MIME type of the returned
XML shall be "application/vnd.ogc.se_xml". Specific error messages can be in-
cluded either as chunks of plain text or as XML-like text containing angle brackets
("<" and ">") if included in a character data (CDATA) section as shown in the exam-
ple of Service Exception XML in Subclause B.6.

Service Exceptions may include exception codes as indicated in Subclause B.6. Serv-
ers shall not use these codes for meanings other than those specified. Clients may use
these codes to automate responses to Service Exceptions.

 p. 11

7 Conceptual coverage model

7.1 Overview
The coverage model of WCPS (see Subclause 7.2) relies on the coverage model of
WCS [4]. Some restrictions and extensions apply wrt. WCS which are listed below in
Subclause 7.2 and 7.5, resp.; no further deviation to the WCS coverage model exists
beyond those listed. Subclause 7.3 describes, based on this coverage model, the con-
stituents a WCPS coverage has by defining a set of coverage probing functions. For
the comprehensive description of the data structures, refer to Annex B (XML) and
Annex C (UML).

7.2 Coverage model

7.2.1 Coverages
A coverage consists of a set of locations bearing some value. Following the mathe-
matical notion of a function that maps elements of a domain (here: spatio-temporal
and/or abstract coordinates) to a range (here: “pixel”, “voxel”, … values), the set of
coverage locations bearing values is called the coverage domain while the set of pos-
sible values, i.e., the coverage value data type, is called the coverage range.

A coverage domain with its set of locations, also termed (grid) cell positions or coor-
dinates, is aligned along some d-dimensional grid where d>0 is called the coverage’s
dimensionality. The coordinate space, i.e. the set of all possible coordinates, is
spanned by d independent axes. An axis is identified by its name which is unique
within the coverage. The set of all axis names of a coverage C is obtained via the
function axisNameSet(C).

NOTE In its current version, the WCPS coverage model is constrained to equally spaced grids,
meaning that the distance between any two adjacent grid points in a coverage is constant per axis. This
notion of a coverage - which intrinsically resembles that of a multi-dimensional array in programming
languages – may be extended in future versions of this document.

7.2.2 Axes
Each axis has an axis type associated, which is one of the elements listed in Table 3.
A coverage can have at most one x, y, z, and time axis, but can have any number of
axes of type abstract.

Table 3 – Coverage domain axis types.
Axis type Meaning
X East-West extent, expressed in the coverage’s CRS
Y North-South extent, expressed in the coverage’s CRS
z Geographical elevation, i.e., height or depth
time Time; coordinates are expressed as time strings according to [10]
abstract None of the above; no spatio-temporal semantics is associated with such an

axis

 p. 12

Each axis has one or more coordinate reference systems (CRSs) associated. One Im-
ageCRS [05-096r1] common to all axes of a given coverage is mandatory, given by
imageCrs(C). Additionally, any number of further CRSs can be associated with a cov-
erage axis, given by the set crsSet(C,a). Image CRS and further CRSs together deter-
mine the set of CRSs which can be used in coordinate-sensitive operations.

NOTE An image CRS always allows to address a coverage in all axes. Fur the other CRSs, how-
ever, several CRSs together may be necessary to fully address a coverage – for example, WGS84 only
knows x and y and thus does not allow to specify z and t coordinates in a 4-D x/y/z/t climate model.

NOTE CRSs are specified in operations using URNs. Some standards use EPSG notation for geo-
spatial coordinates; this approah hasno tbeen adopted to achieve uniformity across spatial, temporal,
and abstract axes.

The WCPS service does not need to publish the mapping between coordinates of the
different supported CRSs.

7.2.3 Locations
A cell location is unambiguously defined by listing its coordinate position for every
axis. A location L is a set LC = { (a,c,p) | a∈axisNameSet(C), c∈crsSet(C),
p∈AxisPointValues } consisting of axis names, the coordinate system used, and a
coordinate relative to this axis and this CRS; each of the coverage’s axis name shall
appear exactly once in this set. The set AxisPointValues is a generalization of nu-
meric and string values that allows to express all kind of coordinates, including geo-
graphic floating-point coordinates and date/time strings.

Example For axis type time, encoding follows ISO 8601:2000 [10] as described in WCS [4] Table
16, 17 and owsTime (that is, the possible values are ASCII strings). For an image CRS, encoding will
be integer for all axis types, and for x/y type geographic coordinates it will usually be float.

On each axis a total ordering relation “≤” shall be available under all CRSs used.

Example On a time axis, this ordering relation will yield true for the following comparison:

 “Sun Jan 1 23:59:59 CET 2006”
 ≤ “Tue Dec 5 22:17:48 CET 2006”

Along each axis a coverage is delimited by a lower and upper bound value, these bor-
der values being part of the coverage extent. Location addresses always are relative to
a particular coverage.

7.2.4 Domain
The set of all locations contained in a coverage forms its domain. A domain’s location
set always is non-empty and is such that it can be described, for each axis, by a lower
and upper bound (lo,hi) expressed in one of the coverage’s CRSs applicable for this
axis where lo≤hi. The domain of a coverage consists of exactly those cell locations
where, for each of its axes, its location l is contained in the closed interval given by
lo and hi: lo≤l≤hi.

To differentiate from the traditional 2-D domain, the multi-dimensional domain con-
cept employed by this document is termed General Domain.

 p. 13

For a coverage C, function generalDomain() describes its domain structure, which is a
set of axis descriptions consisting of axis name, axis type, CRS used, and the lower
and upper bound of the coverage domain expressed in the CRS at hand: generalDo-
main(C) = { (a,t,c,lo,hi) | a∈axisNameSet(C), t∈{x,y,z,time,abstract},
c∈crsSet(C), lo,hi∈AxisPointValues, lo≤hi }

A location L is inside the general domain of a coverage C if its coordinates are inside
the domain extent under all CRSs supported:

Let

C be a coverage,
LC be a location wrt. coverage C
 with LC = { (a,c,p) | a∈axisNameSet(C), c∈crsSet(C), p∈AxisPoint-
Values },
GC be the general domain of coverage C
 with GC = { (a,t,c,lo,hi) | a∈axisNameSet(C), t∈{x,y,z,time,abstract},
 c∈crsSet(C), lo,hi∈AxisPointValues, lo≤hi }.

Then,

LC inside GC
if and only if
 for all (a,c,p)∈LC there is some lo,hi∈AxisPointValues such that:
 (a,t,c,lo,hi)∈GC and lo≤p ≤hi relative to CRS c

NOTE The GeneralDomain of WCPS generalizes the Domain of WCS (see Subclause 7.5).

7.2.5 Range values and types
The value associated with a particular cell location within a coverage, in short: its cell
value, can be obtained with function value(C,lC) which is defined for every location
lC ∈imageCrsDomain(C) and lC inside generalDomain(C).

For addressing in some GeneralDomain CRS, coordinates are server-internally trans-
lated to image CRS coordinates and rounded towards the nearest cell location if nec-
essary.

All cell values of a coverage share the same type, the coverage’s range type. Admissi-
ble types consist of named components called fields; each field is identified by a field
name unique for the coverage on hand and bears one of the (atomic) numeric or Boo-
lean types enumerated in the set RangeFieldTypes (see Table 4):

RangeFieldTypes = { boolean, char, unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, float, double, complex, complex2 }

 p. 14

Table 4 – Coverage range field data types.
Cell data type name Meaning
boolean Boolean
char 8-bit signed integer
unsigned char 8-bit unsigned integer
short 16-bit signed integer
unsigned short 16-bit unsigned integer
int 32-bit signed integer
unsigned int 32-bit unsigned integer
long 64-bit signed integer
unsigned long 64-bit unsigned integer
float Single precision floating point number
double Double precision floating point number
complex Single precision complex number
complex2 Double precision complex number

NOTE This is a restriction over WCS [4], see Subclause 7.4.

NOTE It is not required that all components within a coverage are of the same type.

NOTE Components of a range list are also known as “bands”.

A coverage’s range type description can be obtained by function rangeType() which
delivers a set of pairs of field names and field type:

rangeType(C) = { (f,t) | f ∈ rangeFieldNames(C), t ∈ RangeFieldTypes }

7.2.6 Null and interpolation
Specific range values may serve as null values (WCS [4]). The set of a coverage’s
values to be interpreted as null is obtained via function nullSet().

Operations sometimes require interpolation. Available interpolation types are,
adopted from WCS [4]: linear, quadratic, and cubic.

Behavior of interpolation methods in face of null values is described by the interpola-
tion method’s null resistance (WCS [4]).

Function interpolationSet(C) returns a set of pairs (im,nr) where im indicates the in-
terpolation type and nr the null resistance employed.

For both null values and interpolation method defaults are associated with a coverage,
which can be obtained through functions nullDefault() and interpolationDefault().

7.3 Coverage probing functions
A set of so-called probing functions allows to extract the constituents listed above
from a given coverage. These functions are not part of the interface specification, but
serve for the sole purpose of defining the semantics of ProcessCoverage requests in
Clause 10.

Table 5 summarises the probing functions available.

 p. 15

Table 5 – Coverage probing functions.
Coverage
characteristic

Probing function
for some coverage C

Comment

Identifier identifier(C) For original coverages only, not for
processed coverage results

Cell values value(C,p)
 for all p∈imageCrsDomain(C)

The coverage cell (“pixel”), “voxel”,
…) values themselves, of data type
rangeType(C)

Domain axis set axisSet(C) Set of all of the coverage’s axis

names
Domain axis type axisType(C, a) Axis type
Image CRS imageCRS(C) Image CRS of the coverage, allow-

ing direct grid cell point addressing
Domain extent of
coverage, expressed
in Image CRS

 imageCrsDomain(C) Extent of the coverage in (integer)
grid cell coordinates, relative to the
coverage’s Image CRS1; essentially,
the set of all point coordinates inside
the coverage

Domain extent of
coverage along axis,
expressed in Image
CRS

 imageCrsDomain(C, a)
 for some a ∈ axisSet(C)

Extent of the coverage in (integer)
grid cell coordinates, relative to the
coverage’s Image CRS, for a given
axis; essentially, the set of all values
inside the extent interval

CRS set crsSet(C, a)
 for some a ∈ axisSet(C)

Set of all CRSs which can be used
for addressing in the given axis;
following WCS [4] it shall not in-
clude the Image CRS

General domain
extent of coverage
along axis, ex-
pressed in arbitrary
CRS

 generalDomain(C, a, c)
 for some a ∈ axisSet(C)
 and some c ∈ crsSet(C)

General domain of the coverage,
expressed in one of its CRSs, for a
given (spatial, temporal, or abstract)
axis

Range data type rangeType(C) The data type of the coverage’s cells
Range field type rangeFieldType(C, f)

for some
f∈rangeFieldNames(C)

The data type of one coverage range
field

Range field name set rangeFieldNames(C) Set all of the coverage’s range fields
names

Default null value nullDefault(C) Optional default null value, to be
used whenever an operation returns
a null range value

Null value set nullSet(C,r)
 for all r ∈ rangeType(C)

The set of all values that represent
null as coverage range field value

Default interpolation
method

 InterpolationDefault(C,r)
 for all r ∈ rangeType(C)

Default interpolation method, per
coverage field

1 Note that the same image CRS is supported by all axes of a coverage.

 p. 16

Interpolation method
set

 interpolationSet(C,r)
 for all r ∈ rangeType(C)

All interpolation methods applicable
to the particular coverage range
field; must list at least the default
interpolation method

Interpolation type interpolationType(im)
 for all im∈interpolationList(C)

Interpolation type of a particular
interpolation method; possible val-
ues are listed in WCS [4] Table I.7

Null resistance nullResistance(im)
 for all im∈interpolationList(C)

Null resistance level of a particular
interpolation methods; possible val-
ues are listed in WCS [4] Table I.8

For notational convenience in this document, on the list and set valued items the usual
list and set functions are assumed for extraction and manipulation, such as union, in-
tersection. Further, application of some function to a list or set which is defined on the
elements denotes simultaneous application of this function to all list or set elements.

Example: For a set of numbers {-1, 0, 1} the abs() function produces:
 abs({-1, 0, 1}) = { abs(-1), abs(0), abs(1) } = { 0, 1 }
…while for a list (-1, 0, 1) the abs() function produces:
 abs((-1, 0, 1)) = (abs(-1), abs(0), abs(1)) = (1, 0, 1)

NOTE Operations in WCPS rely solely on the structural information when performing semantic
checks, i.e., on structural compatibility in operations. Ensuring semantic interoperability of coverage
domains and ranges is not within the scope of WCPS.

7.4 Restrictions relative to WCS coverage model
The following features of a WCPS coverage are restricted as compared to the WCS
1.1 coverage concept.

- Range base types in WCPS are constrained to the set indicated in Table 4
while WCS does not constraint the atomic) base types.

NOTE This is necessary to fix the semantics of operations on the range types.

NOTE In practice this should hardly pose a restriction, as at least all numeric types occur-
ring in the applications perceived are provided.

- Atomic range list fields:

Range list fields in WCPS are atomic.

In WCS they alternatively can be composites forming multi-dimensional ar-
rays.

NOTE This restriction is intended to be lifted in a future version of WCPS.

- Mandatory image CRS:

In WCPS an image CRS is is mandatory for a coverage; thus, a coverage al-
ways allows addressing its grid cell points by their array (“pixel”, “voxel”, …)
coordinates.

In WCS an image CRS is optional for a coverage (WCS [4] Table 14).

 p. 17

7.5 Extensions relative to WCS coverage model
The following features of a WCPS coverage extend the WCS coverage concept.

- Extended domain:

WCS allows 2/3/4-D coverages with axes forming a subset of x, y, z, and t,
whereby x and y are mandatory. WCPS adds an arbitrary number of abstract
(i.e., non-spatiotemporal) axes and allows coverage domains of any number of
dimensions greater or equal to one. Spatial, temporal, and abstract axes all are
optional.

NOTE In particular, WCPS does not require a coverage to have spatial axes while WCS
does so, i.e., every coverage must have an x and a y axis in WCS. While non-spatial cover-
ages are not the primary focus of WCPS, it does not exclude them.

Example Possible 2-D coverages resulting from slicing a 4-D x/y/z/t climate model are slices
having x/y, x/z, x/t, y/z, z/t axes, resp.

NOTE From a conceptual viewpoint, single (scalar) values can be modelled as zero-
dimensional coverages. However, this theoretical completion of the dimension numbers has
no practical relevance.

Consequently, WCPS extends the WCS Domain data type which is used by
DescribeCoverage and ProcessCoverage requests (see Annex B). To this
end, the WCS Domain element, which describes the spatio-temporal extent of
a coverage, in WCPS is replaced by the element GeneralDomain. This way,
GeneralDomain contains the WCS Domain as a special case.

The extensions of GeneralDomain consist of the following items:

� additional element AbstractDomain. This optional element allows to de-
fine an arbitrary number of axes without spatio-temporal semantics.

� additional element ElevationDomain. This optional element allows to de-
fine an elevation axis.

� SpatialDomain is optional in WCPS (as opposed to being mandatory in
WCS).

If present the SpatialDomain element does not need to have both x and y
coordinates, but may have just one of x and y present.

NOTE If a coverage has only axes as known to WCS (i.e., one of the axis combinations
x/y, x/y/t, x/y/z, x/y/z/t) then the corresponding WcpsDomain is structurally identical to the
WCS Domain element. In this sense, WCPS is downward compatible with WCS.

- Default null value:

Each coverage has an optional metadata element containing the value to be
used whenever some operation applied to coverage grid cells yields null. This
value must be of the coverage’s range type.

Whenever request evaluation yields a null value for some grid cell, then this
default value shall be used. If the default null value is not available then the

 p. 18

server shall assume 0 for numeric range field types and false for boolean range
field types values as null values.

NOTE While it is not required that such a value is defined (for compatibility with the cur-
rent WCS version [4]) it is recommended to use it.

NOTE While it is not required by this standard that the default null value is one of the null
values listed in the known null values an implementation may want to ensure this for overall
coherence.

- CRS per axis:

In WCPS the CRSs are tied to the axes, respecting the fact that many CRSs al-
low only to express a subset of the axes a coverage may bear, so that conse-
quently more than one CRSs must be used for a complete coverage location
addressing. In WCS, the CRS set is associated with the coverage as a whole.

7.6 WCS compatibility statement
The WCPS standard is designed so as to be downward compatible to WCS. This
means that any WCPS coverage that has only a spatio-temporal extent and no abstract
axes has a structure, from a WCPS client view, which is identical to the structure con-
veyed by the same coverage to a WCS client by a WCS server. In particular, in such a
case

� the result of a WCPS DescribeCoverage request is identical to the result
of a WCS DescribeCoverage request, except that the name of the domain
element in the response in WCPS is “GeneralDomain” and in WCS is
“Domain”;

� the response to a WCPS ProcessCoverage request has the same structure
as a WCS GetCoverage request;

� the WCPS metadata retrieval functions (see Subclause 10.3.8) deliver in-
formation compatible and coherent with the information delivered by a
WCS/WCPS DescribeCoverage request.

 p. 19

8 GetCapabilities operation
The mandatory GetCapabilities operation allows WCS clients to retrieve service meta-
data from a WCS server. The response to a GetCapabilities request shall be an XML
document containing service metadata about the server, usually including summary in-
formation about the data collections from which coverages may be requested. This clause
specifies KVP and XML encoding of a GetCapabilities request and the XML document
that a WCS server shall return to describe its capabilities.

The WCPS GetCapabilities operation is identical to the WCS GetCapabilities opera-
tion [4].

Each server shall implement the GetCapabilities operation.

 p. 20

9 DescribeCoverage operation
Once a client has obtained summary descriptions of a WCS server’s available cover-
ages, it may be able to make ProcessCoverage requests. However, in most cases the
client will need to issue a DescribeCoverage request to obtain a full description of
one or more coverages available. The server responds to such a request with an XML
document describing one or more coverages served by that WCPS.

The WCPS DescribeCoverage operation is identical to the WCS DescribeCoverage
operation [4].

Each server shall implement the DescribeCoverage operation.

NOTE In a future version the DescribeCoverage response most likely will be extended so as to
contain further processing relevant information about the coverage on hand; in particular, concise
summarizability information will be provided (which currently implicitly is contained in the
interpolation methods).

 p. 21

10 ProcessCoverage operation

10.1 Introduction
A Web Coverage Processing Server evaluates a ProcessCoverage request and returns
an appropriate response to the client.

Each server shall implement the ProcessCoverage operation.

While the WCS GetCoverage operation allows retrieval of a coverage from a
coverage offering, possibly modified through operations like spatial, temporal, and
band subsetting and coordinate transformation, the WCPS ProcessCoverage extends
this functionality through more powerful processing capabilities. This includes, on the
one hand, further coverage processing primitives and, on the other hand, nesting of
function application, thereby allowing for arbitrarily complex requests.

NOTE WCPS has been designed so as to be “safe in evaluation” – i.e., implementations are
possible where any valid WCPS request can be evaluated in a finite number of steps, based on the
operation primitives. Hence, WCPS implementations can be constructed in a way that no single request
can render the service permanently unavailable. Notwithstanding, it still is possible to send requests
that will impose high workload on a server.

Clients can choose whether to phrase ProcessCoverage requests based on a cover-
age’s cell coordinates (i.e., using its ImageCRS) or through spatio-temporal coordi-
nates (i.e., using some other CRS listed in the coverage’s DescribeCoverage descrip-
tion).

A WCPS response is an ordered sequence of data items. A data item can be a cover-
age or the result of any other processing expression. The ProcessCoverage operation
returns a coverage as stored on the server, or a constituent thereof, or a derived cover-
age, or a constituent thereof.

NOTE Data items within a WCPS response list can be heterogeneous in size and structure. In
particular, the coverages within a response list can have different dimensions, domains, range types,
etc.

NOTE As the functionality of WCPS centers around coverage processing, metadata are consid-
ered only to the extent necessary for a coherent service. This way WCPS keeps orthogonal to other
OGC standards.

10.2 WCPS expression language specification
The WCPS primitives plus the nesting capabilities form an expression language; this
abstract language collectively is referred to as WCPS language. In the following sub-
sections the language elements are detailed. The complete syntax is listed in Appen-
dix A.

A WCPS expression is called admissible if and only if it adheres to the WCPS lan-
guage syntax. WCPS servers shall return an exception in response to a WCPS request
that is not admissible.

Example The coverage expression

 p. 22

C * 2

is admissible as it adheres to WCPS syntax whereas

C C

seen as a coverage expression violates WCPS syntax and, hence, is not admissible.

The semantics of a WCPS expression is defined by indicating, for all admissible ex-
pressions, the value of each coverage constituent as defined in Subclause 7.3.

An expression is valid if and only if it is admissible and it complies with the condi-
tions imposed by the WCPS language semantics.

Example The coverage expression following is valid if and only if the WCPS offers a coverage with
identifier C that has a numeric field named red.

C.red * 2.5

10.3 ProcessCoverage abstract request syntax

10.3.1 Overview
A WCPS expression is a coverageListExpr (which evaluates to a list of encoded
coverages; see Subclause 10.3.2). Each WCPS request shall contain exactly one cov-
erageListExpr.

10.3.2 coverageListExpr
The coverageListExpr element processes a list of coverages in turn. Each coverage is
optionally checked first for fulfilling some predicate, and gets selected – i.e., contrib-
utes to an element of the result list – only if the predicate evaluates to true. Each cov-
erage selected will be processed, and the result will be appended to the result list. This
result list, finally, is returned as the ProcessCoverage response unless no exception
was generated.

The elements in the coverageList clause are taken from the coverage identifiers ad-
vertised by the server in its GetCapabilities response document. The coverageList
elements shall be inspected sequentially in the order given.

Coverage identifiers may occur more than once in a coverageList. In this case the
coverage shall be inspected each time it is listed, respecting the overall inspection
sequence.

Let

v1, … vn be n iteratorVars (n ≥1),
L1, … Ln be n coverageLists (n ≥1),
b be a booleanScalarExpr possibly containing occurrences of one or more vi
(1≤i≤n),
P be a processingExpr possibly containing occurrences of vi (1≤i≤n).

 p. 23

Then,

for any responseList R,
 where
 R = for v1 in (L1),
 v2 in (L2),
 … ,
 vn in (Ln)
 where b
 return P

R is constructed as follows:

Let R be the empty sequence;

while L1 is not empty:
{ assign the first element in L1 to v1;
 while L2 is not empty:
 { assign the first element in L2 to v2;
 …
 while Ln is not empty:
 { assign the first element in Ln to vn;
 evaluate P, substituting any occurrence
 of coverage identifier vi by the coverage
 this identifier refers to;
 append the evaluation result to R;
 remove the first element from Ln;
 }
 …
 }
 remove the first element from L2;
 }
 remove the first element from L1;
}

Example Assume a WCPS server offers coverages A, B, and C. Then, the server may execute the
following WCPS request:

for c in (A, B, C)
return tiff(c)

to produce a result list containing three TIFF-encoded coverages

(tiff(A), tiff(B), tiff(C))

Example Assume a WCPS server offers satellite images A, B, and C and a coverage M acting as a
mask (i.e., with cell values between 0 and 1). Then, masking each satellite image can be performed
with a request like the following:

for s in (A, B, C),
 m in (M)
return tiff(s * m)

 p. 24

10.3.3 processingExpr
The processingExpr element is either a encodedCoverageExpr (which evaluates to
an encoded coverage; see Subclause 10.3.5), or a storeCoverageExpr (see Subclause
10.3.4), or a scalarExpr (which evaluates to coverage description data or coverage
summary data; see Subclause 10.3.7).

10.3.4 storeCoverageExpr
The storeCoverageExpr element specifies that an encoded coverage result as de-
scribed by its E sub element is not to be delivered immediately as response to the re-
quest, but to be stored on server side for subsequent retrieval. The result of the store-
CoverageExpr expression is the URL under which the result is provided by the
server, and the server returns only the XML response part with the URL(s) being in
place of the coverage(s) generated.

Let

E be an encodedCoverageExpr.

Then,

for any URI U
where
 U = store (E)

U is defined as that URI at which the coverage result is made available by the
server.

Example The following expression will deliver the URL under which the server stores the TIFF-
encoded result coverage C:

store(encode(C, “TIFF”))

NOTE It is not specified in this standard for how long server-side stored coverages remain avail-
able; usually they will be deleted after some implementation dependent time to free server space. Fu-
ture versions of this standard may offer means to address this.

10.3.5 encodedCoverageExpr
The encodedCoverageExpr element specifies encoding of a coverage-valued request
result by means of a data format and possible extra encoding parameters.

Data format encodings should, to the largest extent possible, materialise the cover-
age’s metadata. A service may store further information as part of the encoding.

Example For a georeferenced coverage, a GeoTIFF result file should contain the coverage’s geo
coordinate and resolution information.

NOTE: For materialization of the coverage grid cell values the coverage’s image CRS shall be
used by default. See crsTransformExpr (Subclause 10.3.27) for controlling coverage grid cell values
via other CRSs.

Let

 p. 25

C be a coverageExpr,
f be a string,
where
 f is the name of a data format listed under supportedFormats in the
GetCapabilities response,
 the data format specified by f supports encoding of a coverage of C’s
domain and range.

Then,

for any byteString S
where S is one of
 Se = encode (C , f)
 See = encode (C , f, extraParams)
with extraParams being a string enclosed in double quotes (‘”’)

S is defined as that byte string which encodes C into the data format specified
by formatName and the optional extraParams. Syntax and semantics of the
extraParams are not specified in this standard.

NOTE Some format encodings may lead to a loss of information.

NOTE The extraParams are data format and implementation dependent.

Example The following expression specifies retrieval of coverage C encoded in HDF-EOS:

encode(C, “hdf-eos”)

Example A WCPS implementation may encode a JPEG quality factor of 50% as the string “.50”.

Usage of formats shall adhere to the regulations set forth in WCS [4] Subclause
9.3.2.2.

10.3.6 booleanExpr
The booleanExpr element is a scalarExpr (see Subclause 10.3.7) whose result type
is Boolean.

NOTE WCPS implementors may extend this to allow, e.g., the usual boolean, arithmetic, and
further scalar functions.

10.3.7 scalarExpr
The scalarExpr element is either a getMetaDataExpr (see Subclause 10.3.8) or a
condenseExpr (see Subclause10.3.30).

NOTE As such, it returns a result which is not a coverage.

10.3.8 getMetaDataExpr
The getMetaDataExpr element extracts a coverage description element from a cov-
erage.

 p. 26

NOTE The cell value sets can be extracted from a coverage using subsetting operations (see Sub-
clause 10.3.21).

Let

C be a coverageExpr.

Then,

The following metadata extraction functions are defined, whereby the result is
specified in terms of the coverage’s probing functions (Table 5):

 Metadata function
 (for some coverage C,
 axis a, range field r)

Result (in terms of
probing functions)

Result type

identifier(C) identifier(C) Name

imageCrs(C) imageCRS(C) URN

imageCrsDomain(C,a) imageCrsDomain(C,a) (lower bound, upper
bound) integer pair

crsSet(C) crsSet(C,a) Set of URNs

generalDomain(C,a,c) generalDomain(C,a,c) (lower bound, upper
bound) numeric /
string pair

nullDefault(C) nullDefault(C) value, structured
according to
rangeType(C)

nullSet(C) nullSet(C)

List of values, each
structured according
to rangeType(C)

interpolationDefault(C,r) interpolationDefault(C) Pair of enumeration
values

interpolationSet(C,r) interpolationSet(C,a) List of pairs of
enumeration values

NOTE Not all information about a coverage can be retrieved this way. Adding the information
supplied in a GetCapabilities and DescribeCoverage response provides complete information about a
coverage.

Example For some stored coverage C, the following expression evaluates to “C”:

identifier(C)

10.3.9 setMetaDataExpr
The setMetaDataExpr element allows to derive a coverage with modified metadata,
leaving untouched the coverage cell values and all metadata not addressed.

NOTE As WCPS focuses on the processing of the coverage range values, advanced capabilities
for manipulating a coverage’s metadata are currently not foreseen.

 p. 27

Let

C1 be a coverageExpr,
m, n, p be integers with m≥0 and n≥0 and p≥0,
null be a rangeValue with null∈nullSet(C1),
null1, …, nullm be rangeValues which are cast-compatible with type
rangeType(C1),
f be an identifier, it an interpolationType, nr a nullResistance with
f∈rangeFieldNames(C1) and (im,nr)∈interpolationSet(C1,f),
it1, ..., itn be interpolationTypes, and nr1, ..., nrn be nullResistances with
fi∈rangeFieldNames(C1) for 1≤i≤n and imi∈interpolationSet(C1,fi),
crs1, …, crsp be crsNames.

Then,

for any coverageExpr C2
where C2 is one of
 CnullDef = setNullDefault(C1, null)
 Cnull = setNullSet(C1, { null1, …, nullm })
 CintDef = setInterpolationDefault(C1, f, (im ,nr))
 Cint = setInterpolationSet(C1, f,
 { (im1,nr1),... , (imn,nrn) })
 Ccrs = setCrsSet(C1, { crs1,... , crsp }, a)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) = value(C1, p)

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(CnullDef, a) = crsSet(C1, a)
 crsSet(Cnull, a) = crsSet(C1, a)
 crsSet(CintDef, a) = crsSet(C1, a)
 crsSet(Cint, a) = crsSet(C1, a)
 crsSet(Ccrs, a) = { crs1,... , crsp }
 axisType(C2, a) = axisType(C1, a)

X

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

X

 p. 28

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullDefault(CnullDef) = n
 nullDefault(Cnull) =
 if nullDefault(C1)∈{null1,..., nullm} then nullDefault(C1)
 else undefined2
 nullDefault(CintDef) = nullDefault(C1)

 nullDefault(Cint) = nullDefault(C1)

 nullDefault(Ccrs) = nullDefault(C1)

X

 nullSet(CnullDef) = nullSet(C1)
 nullSet(Cnull) = { null1,... , nullm }
 nullSet(CintDef) = nullSet(C1)

 nullSet(Cint) = nullSet(C1)

 nullSet(Ccrs) = nullSet(C1)

X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(CnullDef, r) = interpolationDefault(C1,
r)
 interpolationDefault(Cnull , r) = interpolationDefault(C1,
r)
 interpolationDefault(CintDef , r) = (it,nr)
 interpolationDefault(Cint , r) =
 if interpolationDefault(C1)∈{(im1,nr1),…,(imn,nrn)}
 then interpolationDefault(C1, r)
 else undefined3
 interpolationDefault(Ccrs , r) = interpolationDefault(C1,
r)

X

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(CnullDef, r) = interpolationSet(C1, r)
 interpolationSet(Cnull , r) = interpolationSet(C1, r)
 interpolationSet(CintDef , r) = interpolationSet(C1, r)
 interpolationSet(Cint , r) = interpolationSet(C1, r)
 interpolationSet(Ccrs , r) =
 if r=f then { (im1,nr1), …, (imn,nrn) }
 else interpolationSet(C1, r)
 interpolationSet(Ccrs , r) = interpolationSet(C1, r)

X

Example Assuming that coverage C has a single numeric range field, the following expression
evaluates to a coverage that has -100 as its default null value:

setNullDefault(C, -100)

2 For an undefined null default, 0 shall be used for numeric null and false for Boolean null (see Clause 7).
3 An undefined default interpolation method shall lead to a runtime exception whenever it needs to be applied (see
Clause 7).

 p. 29

Example The following coverage expression evaluates to a coverage that, in its data, resembles C ,
but has no interpolation method available on its range field landUse, allows linear interpolation with
full null resistance, and quadratic interpolation with half null resistance on C’s range field panchro-
matic:

setInterpolation(setInterpolation(C, landUse, { }),
panchromatic, { linear:full, quadratic:half })

The setNullDefault() and setNullSet() operations shall not change any preexisting
value in the coverage in an attempt to adapt old null values to the new ones.

NOTE Obviously changing a coverage’s null values can render its contents inconsistent.

A server may respond with an exception if it does not support a CRS specified in a
setCrsSet() call.

10.3.10 coverageExpr
The coverageExpr element is either a coverageIdentifier (see Subclause 10.3.11), or
setMetaDataExpr (see Subclause 10.3.9), or an inducedExpr (see Subclause
10.3.12), or a subsetExpr (see Subclause 10.3.21), or a crsTransformExpr (see
Subclause 10.3.27), or a scaleExpr (see Subclause 10.3.26), or a coverageConstruc-
torExpr (see Subclause 10.3.28), or a coverageConstructorExpr (see Subclause
10.3.27), or a condenseExpr (see Subclause 10.3.30).

A coverageExpr always evaluates to a single coverage.

10.3.11 coverageIdentifier
The coverageIdentifier element represents the name of a single coverage offered by
the server addressed.

Let

id be the identifier of a coverage C1 offered by the server.

Then,

for any coverageExpr C2,
where
 C2 = id

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = identifier(C1) = id

 for all p ∈ imageCrsDomain(C2):
 value(C2,p) = value(C1,p)

 imageCrs(C’) = imageCrs(C1)

 p. 30

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullDefault(C2) = nullDefault(C1)

 nullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

Example The following coverage expression evaluates to the complete, unchanged coverage C,
assuming it is offered by the server:

C

10.3.12 inducedExpr
The inducedExpr element is either a unaryInducedExpr (see Subclause 10.3.13) or a
binaryInducedExpr (see Subclause 10.3.20) or a rangeConstructorExpr (see Sub-
clause 10.3.21).

Induced operations allow to simultaneously apply a function originally working on a
single cell value to all cells of a coverage. In case the range type contains more than
one component, the function is applied to each cell component simultaneously.

The result coverage has the same domain, but may change its base type.

NOTE The idea is that for each operation available on the range type, a corresponding coverage
operation is provided (“induced from the range type operation”), a concept first introduced by Ritter et
al. [8].

Example Adding two RGB images will apply the “+” operation to each cell, and within a cell to each
band in turn.

10.3.13 unaryInducedExpr
The unaryInducedExpr element specifies a unary induced operation, i.e., an opera-
tion where only one coverage argument occurs.

 p. 31

NOTE The term “unary” refers only to coverage arguments; it is well possible that further non-
coverage parameters occur, such as an integer number indicating the shift distance in a bit() operation.

A unaryInducedExpr is either a unaryArithmeticExpr or exponentialExpr or
trigonometricExpr (in which case it evaluates to a coverage with a numeric range
type; see Subclauses 10.3.14, 10.3.15,10.3.16), a boolExpr (in which case it evaluates
to a Boolean expression; see Subclause 10.3.17), a castExpr (in which case it evalu-
ates to a coverage with unchanged values, but another range type; see Subclause
10.3.18), or a fieldExpr (in which case a range field selection is performed; see Sub-
clause 10.3.19).

10.3.14 unaryArithmeticExpr
The unaryArithmeticExpr element specifies a unary induced arithmetic operation.

Let

C1 be a coverageExpr
where
 for all range fields r ∈ rangeFieldNames(C1): r is numeric.

Then,

for any coverageExpr C2
where C2 is one of
 Cplus = + C1
 Cminus = - C1
 Csqrt = sqrt(C1)
 Cabs = abs(C1)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(Cplus, p) = value(C1, p)
 value(Cminus, p) = - value(C1, p)
 value(Csqrt, p) = sqrt(value(C1, p))
 value(Cabs, p) = abs(value(C1, p))

X

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 p. 32

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(Cplus,r) = rangeFieldType(C1,r)
 rangeFieldType(Cminus,r) = rangeFieldType(C1,r)
 rangeFieldType(Csqrt,r) =
 if rangeFieldType(C1,r)∈{complex,complex2}
 then complex2
 else double
 rangeFieldType(Cabs,r) = rangeFieldType(C1,r)

X

 nullDefault(Cplus) = nullDefault(C1)
 nullDefault(Cminus) = - nullDefault(C1))
 nullDefault(Csqrt) = sqrt(nullDefault(C1))
 nullDefault(Cabs) = abs(nullDefault(C1))

X

 nullSet(Cplus) = nullSet(C1)
 nullSet(Cminus) = - nullSet(C1)
 nullSet(Csqrt) = sqrt(nullSet(C1))
 nullSet(Cabs) = abs(nullSet(C1))

X

for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

The server shall respond with an exception if one of the coverage’s grid cell values or
its null values is negative.

Example The following coverage expression evaluates to a float-type coverage where each cell value
contains the square root of the sum of the corresponding source coverages’ values.

sqrt(C + D)

10.3.15 trigonometricExpr
The trigonometricExpr element specifies a unary induced trigonometric operation.

Let

C1 be a coverageExpr
where
 for all fields r ∈ rangeFieldNames(C1): r is numeric.

Then,

for any coverageExpr C2
where C2 is one of

 p. 33

 Csin = sin(C1)
 Ccos = cos(C1)
 Ctan = tan(C1)
 Csinh = sinh(C1)
 Ccosh = cosh(C1)
 Carcsin = arcsin(C1)
 Carccos = arccos(C1)
 Carctan = arctan(C1)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C1):
 value(Csin,p) = sin(value(C1,p))
 value(Ccos,p) = cos(value(C1,p))
 value(Ctan,p) = tan(value(C1,p))
 value(Csinh,p) = sinh(value(C1,p))
 value(Ccosh,p) = cosh(value(C1,p))
 value(Carcsin,p) = arcsin(value(C1,p))
 value(Carccos,p) = arccos(value(C1,p))
 value(Carctan,p) = arctan(value(C1,p))

X

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2,r) =
 if rangeFieldType(C1,r)∈{complex,complex2}
 then complex2
 else double

X

 nullDefault(Csin) = sin(nullDefault(C1))
 nullDefault(Ccos) = cos(nullDefault(C1))
 nullDefault(Ctan) = tan(nullDefault(C1))
 nullDefault(Csinh) = sinh(nullDefault(C1))
 nullDefault(Ccosh) = cosh(nullDefault(C1))
 nullDefault(Carcsin) = arcsin(nullDefault(C1))
 nullDefault(Carccos) = arccos(nullDefault(C1))

X

 p. 34

 nullDefault(Carctan) = arctan(nullDefault(C1))

 nullSet(Csin) = sin(nullSet(C1))
 nullSet(Ccos) = cos(nullSet(C1))
 nullSet(Ctan) = tan(nullSet(C1))
 nullSet(Csinh) = sinh(nullSet(C1))
 nullSet(Ccosh) = cosh(nullSet(C1))
 nullSet(Carcsin) = arcsin(nullSet(C1))
 nullSet(Carccos) = arccos(nullSet(C1))
 nullSet(Carctan) = arctan(nullSet(C1))

X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

The server shall respond with an exception if one of the coverage’s grid cell values or
its null values is not within the domain of the function to be applied to it.

Example The following expression replaces all (numeric) values of coverage C with their sine:

sin(C)

10.3.16 exponentialExpr
The exponentialExpr element specifies a unary induced exponential operation.

Let

C1 be a coverageExpr
where
 for all fields r ∈ rangeFieldNames(C1): r is numeric.

Then,

for any coverageExpr C2
where C2 is one of
 Cexp = exp(C1)
 Clog = log(C1)
 Cln = ln(C1)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(Cexp,p) = exp(value(C1,p))

X

 p. 35

 value(Clog ,p) = log(value(C1,p))
 value(Cln ,p) = ln(value(C1,p))

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2,r) =
 if rangeFieldType(C1,r)∈{complex,complex2}
 then complex2
 else double

X

 nullDefault(Cexp) = exp(nullDefault(C1))
 nullDefault(Clog) = log(nullDefault(C1))
 nullDefault(Cln) = ln(nullDefault(C1))

X

 nullSet(Cexp) = exp(nullSet(C1))
 nullSet(Clog) = log(nullSet(C1))
 nullSet(Cln) = ln(nullSet(C1))

X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

The server shall respond with an exception if one of the coverage’s grid cell values or
its null values is not within the domain of the function to be applied to it.

Example The following expression replaces all (nonnegative numeric) values of coverage C with
their natural logarithm:

ln(C)

10.3.17 boolExpr
The boolExpr element specifies a unary induced Boolean operation. The only opera-
tion available is logical negation (logical “not”).

Let

 p. 36

C1 be a coverageExpr
where
 for all fields r ∈ rangeFieldNames(C1): r = Boolean.

Then,

for any coverageExpr C2
where C2 is one of
 Cnot = not C1
 Cbit = bit(C1 , n)
where n is an expression evaluating to a nonnegative integer value

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(Cnot , p) = not(value(C1,p))
 value(Cbit, p) = (value(C1,p) >> value(n)) mod 2

X

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2,r) = Boolean

X

 nullDefault(Cnot) = not(nullDefault(C1))
 nullDefault(Cbit) = (nullDefault(C1) >> value(n)) mod 2

X

 nullSet(Cnot) = not(nullSet(C1))
 nullSet(Cbit) = (nullSet(C1) >> value(n)) mod 2

X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

 p. 37

Example The following expression inverts all (assumed: Boolean) range field values of coverage C:

not C

NOTE The operation bit(a,b) extracts bit position b (assuming a binary representation) from
integer number a and shifts the resulting bit value to bit position 0. Hence, the resulting value is either
0 or 1.

10.3.18 castExpr
The castExpr element specifies a unary induced cast operation, that is: to change the
range type of the coverage while leaving all other properties unchanged.

NOTE Depending on the input and output types result possibly may suffer from a loss of accuracy
through data type conversion.

Let

C1 be a coverageExpr,
t be a range field type name.

Then,

for any coverageExpr C2
where
 C2 = (t) C1

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2 , p) = (t) value(C1,p)

X

 imageCrs(C2) = imageCrs(C1)

 imageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 for all fields r ∈ rangeFieldNames(C2):
 rangeFieldType(C2,r) = t

X

 p. 38

 nullDefault(C2) = (t) nullDefault(C1) X

 nullSet(C2) = { n | n0 ∈ nullSet(C1), n = (t) n0 } X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

The server shall respond with an exception if one of the coverage’s grid cell values or
its null values cannot be cast to the type specified (see Subclause 10.4.5).

Example the result range type of the following expression will be char, i.e., 8 bit:

(char) (C / 2)

10.3.19 fieldExpr
The fieldExpr element specifies a unary induced field selection operation. Fields are
selected by their name, in accordance with the WCS range field subsetting operation.

NOTE Due to the current restriction to atomic range fields, the result of a field selection has
atomic values too.

Let

C1 be a coverageExpr,
comp be a fieldName which is a range field of type t within rangeType(C1).

Then,

for any coverageExpr C2
where
 C2 = C1.comp

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) = value(C1.comp, p)

 imageCrs(C2) = imageCrs(C1)

 ImageCrsDomain(C2) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):

 p. 39

 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C2, a, c)

 rangeFieldType(C2,comp) = t X

 nullDefault(C2) = nullDefault(C1.comp)

 nullSet(C2) = { n | n0 ∈ nullSet(C1), n = n0.comp }

 interpolationDefault(C2, comp) = interpolationDefault(C1,
comp)

 interpolationSet(C2, comp) = interpolationSet(C1, comp)

Example Let C be a coverage with range type integer. Then the following request snippet describes a
single-field, integer-type coverage where each cell value contains the difference between red and green
band:

C.red - C.green

10.3.20 binaryInducedExpr
The binaryInducedExpr element specifies a binary induced operation, i.e., an opera-
tion involving two coverage-valued arguments.

The coverage range types shall be numeric.

Let

C1, C2 be coverageExprs,
S1, S2 be rangeValues,
where
 imageCrsDomain(C1,a) = imageCrsDomain(C2,a),
 imageCrs(C1,a) = imageCrs(C2,a),
 generalDomain(C1,a) = generalDomain(C2,a),
 crsSet(C1,a) = crsSet(C2,a) for all a ∈ axisSet(C2),
 crsSet(C1) = crs(C2),
 rangeFieldNames(C1) = rangeFieldNames(C2),
 rangeType(C1,f) is cast-compatible with rangeType(C2,f) or
 rangeType(C2,f) is cast-compatible with rangeType(C1,f)
 for all f ∈ rangeFieldNames(C1),
 null(C1) = null(C2),
 S1, S2 are of type rangeType(C1).

Then,

for any coverageExpr C3
where C3 is one of

 p. 40

 CplusCC = C1 + C2 and rangeType(C1), rangeType(C2) numeric
 CminCC = C1 - C2 and rangeType(C1), rangeType(C2) numeric
 CmultCC = C1 * C2 and rangeType(C1), rangeType(C2) numeric
 CdivCC = C1 / C2 and rangeType(C1), rangeType(C2) numeric
 CandCC = C1 and C2 and rangeType(C1)=rangeType(C2)=Boolean
 CorCC = C1 or C2 and rangeType(C1)=rangeType(C2)=Boolean
 CxorCC = C1 xor C2 and rangeType(C1)=rangeType(C2)=Boolean
 CeqCC = C1 = C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CltCC = C1 < C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CgtCC = C1 > C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CleCC = C1 <= C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CgeCC = C1 >= C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CneCC = C1 != C2 and rangeType(C1), rangeType(C2) numeric or
Boolean
 CovlCC = C1 overlay C2 and rangeType(C1), rangeType(C2) nu-
meric or Boolean

 CplusSC = S1 + C2 and S1, rangeType(C2) numeric
 CminSC = S1 - C2 and S1, rangeType(C2) numeric
 CmultSC = S1 * C2 and S1, rangeType(C2) numeric
 CdivSC = S1 / C2 and S1, rangeType(C2) numeric
 CandSC = S1 and C2 and S1, rangeType(C2) Boolean
 CorSC = S1 or C2 and S1, rangeType(C2) Boolean
 CxorSC = S1 xor C2 and S1, rangeType(C2) Boolean
 CeqSC = S1 = C2 and S1, rangeType(C2) numeric or Boolean
 CltSC = S1 < C2 and S1, rangeType(C2) numeric or Boolean
 CgtSC = S1 > C2 and S1, rangeType(C2) numeric or Boolean
 CleSC = S1 <= C2 and S1, rangeType(C2) numeric or Boolean
 CgeSC = S1 >= C2 and S1, rangeType(C2) numeric or Boolean
 CneSC = S1 != C2 and S1, rangeType(C2) numeric or Boolean
 CovlSC = S1 overlay C2 and S1, rangeType(C2) numeric or Boo-
lean

 CplusCS = C1 + S2 and rangeType(C1), S2 numeric
 CmincS = C1 - S2 and rangeType(C1), S2 numeric
 CmultCS = C1 * S2 and rangeType(C1), S2 numeric
 CdivCS = C1 / S2 and rangeType(C1), S2 numeric
 CandCS = C1 and S2 and rangeType(C1), S2 Boolean
 CorCS = C1 or S2 and rangeType(C1), S2 Boolean
 CxorCS = C1 xor S2 and rangeType(C1), S2 Boolean
 CeqCS = C1 = S2 and rangeType(C1), S2 numeric or Boolean
 CltCS = C1 < S2 and rangeType(C1), S2 numeric or Boolean
 CgtCS = C1 > S2 and rangeType(C1), S2 numeric or Boolean
 CleCS = C1 <= S2 and rangeType(C1), S2 numeric or Boolean
 CgeCS = C1 >= S2 and rangeType(C1), S2 numeric or Boolean

 p. 41

 CneCS = C1 != S2 and rangeType(C1), S2 numeric or Boolean
 CovlCS = C1 overlay S2 and rangeType(C1), S2 numeric or Boo-
lean

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C3):
 value(CplusCC, p) = value(C1) + value(C2)
 value(CminCC, p) = value(C1) - value(C2)
 value(CmultCC, p) = value(C1) * value(C2)
 value(CdivCC, p) = value(C1) / value(C2)
 value(CandCC, p) = value(C1) and value(C2)
 value(CorCC, p) = value(C1) or value(C2)
 value(CxorCC, p) = value(C1) xor value(C2)
 value(CeqCC, p) = value(C1) = value(C2)
 value(CltCC, p) = value(C1) < value(C2)
 value(CgtCC, p) = value(C1) > value(C2)
 value(CleCC, p) = value(C1) <= value(C2)
 value(CgeCC, p) = value(C1) >= value(C2)
 value(CneCC, p) = value(C1) != value(C2)
 value(CovlCC, p) = value(C2) if value(C1)=0
 value(C1) otherwise

 value(CplusSC, p) = S1 + value(C2)
 value(CminSC, p) = S1 - value(C2)
 value(CmultSC, p) = S1 * value(C2)
 value(CdivSC, p) = S1 / value(C2)
 value(CandSC, p) = S1 and value(C2)
 value(CorSC, p) = S1 or value(C2)
 value(CxorSC, p) = S1 xor value(C2)
 value(CeqSC, p) = S1 = value(C2)
 value(CltSC, p) = S1 < value(C2)
 value(CgtSC, p) = S1 > value(C2)
 value(CleSC, p) = S1 <= value(C2)
 value(CgeSC, p) = S1 >= value(C2)
 value(CneSC, p) = S1 != value(C2)
 value(CovlSC, p) = value(C2) if S1=0
 S1 otherwise

 value(CplusCS, p) = value(C1) + S2
 value(CminCS, p) = value(C1) - S2
 value(CmultCS, p) = value(C1) * S2
 value(CdivCS, p) = value(C1) / S2
 value(CandCS, p) = value(C1) and S2
 value(CorCS, p) = value(C1) or S2
 value(CxorCS, p) = value(C1) xor S2
 value(CeqCS, p) = value(C1) = S2

X

 p. 42

 value(CltCS, p) = value(C1) < S2
 value(CgtCS, p) = value(C1) > S2
 value(CleCS, p) = value(C1) <= S2
 value(CgeCS, p) = value(C1) >= S2
 value(CneCS, p) = value(C1) != S2
 value(CovlCS, p) = S2 if value(C1)=0
 value(C1) otherwise
Whenever necessary, appropriate cast operations are performed
on the values prior to performing the binary value operation (cf.
Subclause 10.4.5).

 imageCrs(C3) = imageCrs(C1)

 imageCrsDomain(C3) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C3, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C3), c ∈ crsSet(C3, a):
 generalDomain(C3, a, c) = generalDomain(C1, a, c)

 for all r ∈ rangeFieldNames(C3):
 rangeFieldType(C3, r) = type(value(C3))

X

nullDefault(CplusCC) = nullDefault(C1) + nullDefault(C2)
nullDefault(CminCC) = nullDefault(C1) - nullDefault(C2)
nullDefault(CmultCC) = nullDefault(C1) * nullDefault(C2)
nullDefault(CdivCC) = nullDefault(C1) / nullDefault(C2)
nullDefault(CandCC) = nullDefault(C1) and nullDefault(C2)
nullDefault(CorCC) = nullDefault(C1) or nullDefault(C2)
nullDefault(CxorCC) = nullDefault(C1) xor nullDefault(C2)
nullDefault(CeqCC) = nullDefault(C1) = nullDefault(C2)
nullDefault(CltCC) = nullDefault(C1) < nullDefault(C2)
nullDefault(CgtCC) = nullDefault(C1) > nullDefault(C2)
nullDefault(CleCC) = nullDefault(C1) <= nullDefault(C2)
nullDefault(CgeCC) = nullDefault(C1) >= nullDefault(C2)
nullDefault(CneCC) = nullDefault(C1) != nullDefault(C2)
nullDefault(CovlCC) = nullDefault(C2) if nullDefault(C1)=0
 nullDefault(C1) otherwise

nullDefault(CplusSC) = S1 + nullDefault(C2)
nullDefault(CminSC) = S1 - nullDefault(C2)
nullDefault(CmultSC) = S1 * nullDefault(C2)
nullDefault(CdivSC) = S1 / nullDefault(C2)
nullDefault(CandSC) = S1 and nullDefault(C2)
nullDefault(CorSC) = S1 or nullDefault(C2)
nullDefault(CxorSC) = S1 xor nullDefault(C2)
nullDefault(CeqSC) = S1 = nullDefault(C2)

X

 p. 43

nullDefault(CltSC) = S1 < nullDefault(C2)
nullDefault(CgtSC) = S1 > nullDefault(C2)
nullDefault(CleSC) = S1 <= nullDefault(C2)
nullDefault(CgeSC) = S1 >= nullDefault(C2)
nullDefault(CneSC) = S1 != nullDefault(C2)
nullDefault(CovlSC) = nullDefault(C2) if S1=0
 S1 otherwise

nullDefault(CplusCS) = nullDefault(C1) + S2
nullDefault(CminCS) = nullDefault(C1) - S2
nullDefault(CmultCS) = nullDefault(C1) * S2
nullDefault(CdivCS) = nullDefault(C1) / S2
nullDefault(CandCS) = nullDefault(C1) and S2
nullDefault(CorCS) = nullDefault(C1) or S2
nullDefault(CxorCS) = nullDefault(C1) xor S2
nullDefault(CeqCS) = nullDefault(C1) = S2
nullDefault(CltCS) = nullDefault(C1) < S2
nullDefault(CgtCS) = nullDefault(C1) > S2
nullDefault(CleCS) = nullDefault(C1) <= S2
nullDefault(CgeCS) = nullDefault(C1) >= S2
nullDefault(CneCS) = nullDefault(C1) != S2
nullDefault(CovlCS) = S2 if nullDefault(C1)=0
 nullDefault(C1) otherwise

nullSet(CplusCC) = nullSet(C1) + nullSet(C2)
nullSet(CminCC) = nullSet(C1) - nullSet(C2)
nullSet(CmultCC) = nullSet(C1) * nullSet(C2)
nullSet(CdivCC) = nullSet(C1) / nullSet(C2)
nullSet(CandCC) = nullSet(C1) and nullSet(C2)
nullSet(CorCC) = nullSet(C1) or nullSet(C2)
nullSet(CxorCC) = nullSet(C1) xor nullSet(C2)
nullSet(CeqCC) = nullSet(C1) = nullSet(C2)
nullSet(CltCC) = nullSet(C1) < nullSet(C2)
nullSet(CgtCC) = nullSet(C1) > nullSet(C2)
nullSet(CleCC) = nullSet(C1) <= nullSet(C2)
nullSet(CgeCC) = nullSet(C1) >= nullSet(C2)
nullSet(CneCC) = nullSet(C1) != nullSet(C2)
nullSet(CovlCC) = nullSet(C2) if nullSet(C1)=0
 nullSet(C1) otherwise

nullSet(CplusSC) = S1 + nullSet(C2)
nullSet(CminSC) = S1 - nullSet(C2)
nullSet(CmultSC) = S1 * nullSet(C2)
nullSet(CdivSC) = S1 / nullSet(C2)
nullSet(CandSC) = S1 and nullSet(C2)
nullSet(CorSC) = S1 or nullSet(C2)
nullSet(CxorSC) = S1 xor nullSet(C2)
nullSet(CeqSC) = S1 = nullSet(C2)
nullSet(CltSC) = S1 < nullSet(C2)
nullSet(CgtSC) = S1 > nullSet(C2)

X

 p. 44

nullSet(CleSC) = S1 <= nullSet(C2)
nullSet(CgeSC) = S1 >= nullSet(C2)
nullSet(CneSC) = S1 != nullSet(C2)
nullSet(CovlSC) = nullSet(C2) if S1=0
 S1 otherwise

nullSet(CplusCS) = nullSet(C1) + S2
nullSet(CminCS) = nullSet(C1) - S2
nullSet(CmultCS) = nullSet(C1) * S2
nullSet(CdivCS) = nullSet(C1) / S2
nullSet(CandCS) = nullSet(C1) and S2
nullSet(CorCS) = nullSet(C1) or S2
nullSet(CxorCS) = nullSet(C1) xor S2
nullSet(CeqCS) = nullSet(C1) = S2
nullSet(CltCS) = nullSet(C1) < S2
nullSet(CgtCS) = nullSet(C1) > S2
nullSet(CleCS) = nullSet(C1) <= S2
nullSet(CgeCS) = nullSet(C1) >= S2
nullSet(CneCS) = nullSet(C1) != S2
nullSet(CovlCS) = S2 if nullSet(C1)=0
 nullSet(C1) otherwise

 for all r ∈ rangeFieldNames(C3):
 interpolationDefault(C3, r) =
 if interpolationDefault(C2, r) = interpolationDefault(C1, r)
 then interpolationDefault(C1, r)
 else none

X

 for all r ∈ rangeFieldNames(C3):
 interpolationSet(C3, r) =
 interpolationSet(C2, r) ∩ interpolationSet(C1, r)

X

Example The following expression describes a coverage composed of the sum of the red, green, and
blue fields of coverage C:

C.red + C.green + C.blue

10.3.21 rangeConstructorExpr
The rangeConstructorExpr, an n-ary induced operation, allows to build coverages
with compound range structures. To this end, coverage range field expressions enu-
merated are combined into one coverage. All input coverages must match wrt. do-
mains and CRSs.

It is allowed to list an input coverage more than once.

Let

n be an integer with n≥1,
C1, …, Cn be coverageExprs,

 p. 45

f1, …, fn be fieldNames
where, for 1≤i,j≤n,
 fi ∈ rangeFieldNames(Ci),
 imageCrs(Ci) = imageCrs(Cj),
 imageCrsDomain(Ci) = imageCrsDomain(Cj),
 crsSet(Ci) = crsSet(Cj),
 generalDomain(Ci,ai,ci) = generalDomain(Cj,aj,cj)
 for all ai∈axisSet(Ci), aj∈axisSet(Cj), ci∈crsSet(Ci), cj∈crsSet(Cj).

Then,

for any coverageExpr C’
where
 C’ = { C1 , … , Cn }

C’ is defined as follows:

 Coverage constituent Changed?

 identifier(C’) = “” (empty string) X

 for all p ∈ imageCrsDomain(C’), i in {1, …, n}:
 value(C’.fi, p) = value(Ci.fi, p)

X

 imageCrs(C’) = imageCrs(C1)

 imageCrsDomain(C’) = imageCrsDomain(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C’, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C1), c ∈ crsSet(C1):
 generalDomain(C’, a, c) = generalDomain(C1, a, c)

for all fields r ∈{ f1, …, fn}:
 rangeFieldType(C3, r) = rangeFieldType(Ci, fi)

X

 nullDefault(C’) = { nullDefault(C1), …, nullDefault(Cn) } X

 nullSet(C’) = nullSet(C1) × … × nullSet(Cn) X

 for all i in {1, …, n}:
 interpolationDefault(C’, fi) = interpolationDefault(Ci, fi
)

X

 for all i in {1, …, n}:
 interpolationSet(C’, fi) = interpolationSet(Ci, fi)

X

 p. 46

Example: The expression below does a false color encoding by combining near-infrared, red, and
green bands into a 3-band image of 8-bit channels each, which can be visually interpreted as RGB:

{ (char) L.nir, (char) L.red, (char) L.green }

The following expression transforms a greyscale image G containing a single range field
panchromatic into an RGB-structured image:

{ G.panchromatic, G.panchromatic, G.panchromatic }

10.3.22 subsetExpr
The subsetExpr element specifies spatial and temporal domain subsetting. It encom-
passes spatial and temporal trimming (i.e., constraining the result coverage domain to
a subinterval, Subclause 10.3.23), slicing (i.e., cutting out a hyperplane from a cover-
age, Subclause 10.3.25), extending (Subclause 10.3.24), and scaling (Subclause 0) of
a coverage expression.

All of the subsetExpr elements allow to make use of coordinate reference systems
other than a coverage’s image CRS. A coverage’s individual mapping from general
domain to image CRS (grid cell) coordinates does not need to be disclosed by the
server, hence any coordinate transformation should be considered a “black box” by
the client.

NOTE The special case that subsetting leads to a single cell remaining still resembles a coverage
by definition; this coverage is viewed as being of dimension 0.

NOTE Range subsetting is accomplished via the unary induced fieldExpr (cf. Subclause 10.3.19).

10.3.23 trimExpr
The trimExpr element extracts a subset from a given coverage expression along the
axis indicated, specified by a lower and upper bound for each axis affected. Interval
limits can be expressed in the coverage’s image CRS or any CRS which the the cov-
erage supports.

Lower as well as upper limits must lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-
style syntax are provided; both are equivalent in semantics.

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
a1,…,an be pairwise distinct axisNames with ai ∈ axisNameSet(C1) for
1≤i≤n,
crs1,…,crsn be pairwise distinct crsNames with crsi ∈ crsList(C1) for
1≤i≤n,
(lo1:hi1),…,(lon:hin) be axisPoint pairs with loi≤hii for 1≤i≤n.

Then,

 p. 47

for any coverageExpr C2
where C2 is one of
 Cbracket = C1 [p1, …, pn]
 Cfunc = trim (C1, { p1, …, pn })
with
 pi is one of
 pimg,i = ai(loi:hii)
 pcrs,i = ai:crsi(loi:hii)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) = value(C1,p)

 imageCrs(C2) = imageCrs(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 if a = ai for some i
 then imageCrsDomain(C2 , a) = (loi,img , hii,img)
 else imageCrsDomain(C2 , a) = imageCrsDomain(C1 , a
)
where (loi,img , hii,img) = (loi,hii) if no CRS is indicated, and
the transform from crsi into the image CRS if crsi is indi-
cated.

X

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2):
 if a = ai for some i
 then generalDomain(C2 , a, c) = (loi,c , hii,c)
 else generalDomain(C2 , a, c) = generalDomain(C1 , a,
c)
where (loi,c,hii,c) represent the axis boundaries (loi,hii) trans-
formed of (loi,hii) from the C2 image CRS into CRS c.

X

for all r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 p. 48

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

NOTE It is possible to mix different CRSs in one trim operation, however each axis must be ad-
dressed in exactly one CRS (either image CRS or another supported CRS).

Example A trim operation might simultaneously perform x/y trimming expressed in some geo-
graphic coordinate CRS, time trimming in a time CRS, and abstract axis trimming in (integer) grid cell
coordinates.

10.3.24 extendExpr
The extendExpr element extends a coverage to the bounding box indicated. The new
cells are filled with the coverage’s default null value.

There is no restriction on the position and size of the new bounding box; in particular,
it does not need to lie outside the coverage; it may intersect with the coverage; it may
lie completely inside the coverage; it may not intersect the coverage at all (in which
case a coverage completely filled with null values will be generated).

NOTE In this sense the extendExpr is a generalization of the trimExpr; still the trimExpr
should be used whenever the application needs to be sure that a proper subsetting has to take place.

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
a1,…,an be pairwise distinct axisNames with ai ∈ axisNameSet(C1) for
1≤i≤n,
crs1,…,crsn be pairwise distinct crsNames with crsi ∈ crsList(C1) for
1≤i≤n,
 (lo1:hi1),…,(lon:hin) be axisPoint pairs with loi≤hii for 1≤i≤n.

Then,

for any coverageExpr C2
where
 C2 = extend (C1, { p1, …, pn })
with
 pi is one of
 pimg,i = ai(loi:hii)
 pcrs,i = ai:crsi(loi:hii)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) = value(C1,p) for p ∈
imageCrsDomain(C1)

X

 p. 49

 value(C2, p) = nullDefault(C1) otherwise

 imageCrs(C2) = imageCrs(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 if a = ai for some i
 then imageCrsDomain(C2 , a) = (loi,img , hii,img)
 else imageCrsDomain(C2 , a) = imageCrsDomain(C1 , a
)
where (loi,img , hii,img) = (loi,hii) if no CRS is indicated, and
the transform of (loi,hii) from crsi into the C2 image CRS if
crsi is indicated.

X

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

 for all a ∈ axisSet(C2), c ∈ crsSet(C2):
 if a = ai for some i
 then generalDomain(C2 , a, c) = (loi,c , hii,c)
 else generalDomain(C2 , a, c) = generalDomain(C1 , a,
c)
where (loi,c,hii,c) represent the axis boundaries (loi,hii) trans-
formed from their image CRS into CRS c.

X

for all r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullDefault(C2) = nullDefault(C1)

 nullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

NOTE A server may decide to restrict the CRSs available on the result, as not all CRSs may be
technically appropriate any more.

10.3.25 sliceExpr
The sliceExpr element extracts a spatial slice (i.e., a hyperplane) from a given cover-
age expression along one of its axes, specified by one or more slicing axes and a slic-
ing position thereon. For each slicing axis indicated, the resulting coverage has a di-
mension reduced by 1; its axes are the axes of the original coverage, in the same se-

 p. 50

quence, with the section axis being removed from the list. CRSs not used by any re-
maining axis are removed from the coverage’s CRS set.

The slicing coordinates shall lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-
style syntax are provided; both are equivalent in semantics.

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
a1,…,an be pairwise distinct axisNames with ai ∈ axisNameSet(C1) for
1≤i≤n,
crs1,…,crsn be pairwise distinct crsNames with crsi ∈ crsList(C1) for
1≤i≤n,
s1,…,sn be axisPoints for 1≤i≤n.

Then,

for any coverageExpr C2
where C2 is one of
 Cbracket = C1 [S1, …, Sn]
 Cfunc = slice(C1, , { S1, …, Sn })
with
 Si is one of
 Simg,i = ai(si)
 Scrs,i = ai:crsi(si)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C1)
 such that
 for all a ∈ axisSet(C1):
 if a∈{a1,…,an}
 then
 let pa be that component of p addressing axis a
 pa’ = si for Simg,i
 pa’ = si transformed from crsi for Scrs,i
 else
 let pa be that component of p addressing axis a
 let pa’ be that component of p’ addressing
axis a
 pa, pa’ ∈ imageCrsDomain(C1,a)
value(C2, p) = value(C1,p’)

 p. 51

 imageCrs(C2) = imageCrs(C1)

 axisSet(C2) = axisSetCrs(C1) \ {a1,…,an} X

 for all a ∈ axisSet(C2):
 imageCrsDomain(C2, a) = imageCrsDomain(C1, a)

X

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 \ ({crs1,…,crsn} \ crsSet(C1, a))
 axisType(C2, a) = axisType(C1, a)

X

for all a ∈ axisSet(C1) \ {a1,…,an}, c ∈ crsSet(C2, a):
 generalDomain(C2, a, c) = generalDomain(C1, a, c)

X

 for all r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 NullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

NOTE A server may decide to restrict the CRSs available on the result, as not all CRSs may be
appropriate any more.

NOTE In a future version of this document this function is likely to be .extended with multi-
dimensional slicing.

10.3.26 scaleExpr
The scaleExpr element performs scaling along a subset of the source coverage’s axes.
For each of the coverage’s range fields, an interpolation method can be chosen from
the coverage’s interpolation method list. If no interpolation is indicated for a field,
then this field’s default interpolation method.

A service exception shall be raised if for any of the coverage’s range fields no appro-
priate interpolation method is available for the resampling/interpolation performed in
the course of the transformation.

Let

C1 be a coverageExpr,
m, n be integers with 0≤m and 0≤n,
a1,…,am be pairwise distinct axisNames with ai ∈ axisNameSet(C1) for
1≤i≤m,
(lo1,hi1),…,(lom,him) be axisPoint pairs with loi≤hii for 1≤i≤m,
f1, ..., fn be pairwise distinct fieldNames, it1, ..., itn be interpolationTypes,

 p. 52

nr1, ..., nrn be nullResistances with fi∈rangeFieldNames(C1)
 and (iti,nri)∈interpolationSet(C1,fi) for 1≤i≤n.

Then,

For any coverageExpr C2,
where
 C2 = scale (
 C1,
 { p1, …, pm })
 { f1(it1,nr1), ..., fn(itn,nrn) }
)
with
 pi is one of
 pimg,i = ai(loi:hii)
 pcrs,i = ai:crsi(loi:hii)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) is obtained by rescaling the coverage along
axes ai such that the coverage’s extent along axis ai is set to
(loi:hii), expressed in the coverage’s image CRS; all other
axes remain unaffected.

For every range field fi listed, interpolation type iti and null
resistance nri are applied during evaluation; for all range fields
not listed their resp. default interpolation is applied.

X

 imageCrs(C2) = imageCrs(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C1):
 if a = ai for some i
 then imageCrsDomain(C2 , a) = (loi :hii)
 else imageCrsDomain(C2 , a) = imageCrsDomain(C1 , a
)

X

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2,a,c) = generalDomain(C1,a,c)

 for all r ∈ rangeFieldNames(C2):

 p. 53

 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C2, r) = interpolationSet(C1, r)

NOTE Scaling regularly involves cell interpolation, hence potential numerical instabilities have to
be expected.

Example The following expression performs x/y scaling of some coverage C – which has one single
range field, temperature – using interpolation type cubic and null resistance full in both x
and y axis, assuming that the range field supports this method:

scale(
 C,
 { x:(lox:hix), y:(loy:hiy) },
 { red:(cubic,full), nir:(linear,half) }
)

If the default interpolation method is undefined and no interpolation method is indi-
cated expressly then the server shall respond with a runtime exception.

10.3.27 crsTransformExpr
The element performs reprojection of a coverage. For each axis, a separate CRS can
be indicated; for any axis for which no CRS is indicated, no reprojection will be per-
formed. For the resampling which usually is incurred the interpolation method and
null resistance can be indicated per range field; for fields not mentioned the default
will be applied.

NOTE This changes the cell values (e.g., pixel radiometry).

NOTE A service may refuse to accept some CRS combinations (e.g., different CRSs handling for
x and y axis).

NOTE As any coverage bearing a CRS beyond its image CRS is stored in some CRS, there will
normally be a parameter combination which retrieves the coverage as stored, without any reprojection
operation required.

Let

C1 be a coverageExpr,
m, n be integers with 1≤m and 0≤n,
a1,…,am be pairwise distinct axisNames with ai ∈ axisNameSet(C1) for
1≤i≤m,
crs1,…,crsm be pairwise distinct crsNames with crsi ∈ crsList(C1) for
1≤i≤m,
f1, ..., fn be pairwise distinct fieldNames,

 p. 54

it1, ..., itn be interpolationTypes,
nr1, ..., nrn be nullResistances with fi∈rangeFieldNames(C1)
 and (iti,nri)∈interpolationSet(C1,fi) for 1≤i≤n.

Then,

for any coverageExpr C2
where
 C2 = crsTransform(
 C1, ,
 { a1:crs1, …, am:crsm })
 { f1(it1,nr1), ..., fn(itn,nrn) }
)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = “” (empty string) X

 for all p ∈ imageCrsDomain(C2):
 value(C2, p) is obtained by reprojecting coverage C1 along
axes ai into CRS crsi; all other axes remain unaffected.
 For every range field fi listed, interpolation type iti and
null resistance nri are applied during evaluation; for all range
fields not listed their resp. default interpolation is applied.

X

 imageCrs(C2) = imageCrs(C1)

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C1):
 imageCrsDomain(C2 , a) = imageCrsDomain(C1 , a)

 for all a ∈ axisSet(C2):
 crsSet(C2, a) = crsSet(C1, a)
 axisType(C2, a) = axisType(C1, a)

for all a ∈ axisSet(C2), c ∈ crsSet(C2, a):
 generalDomain(C2,a,c) = generalDomain(C1,a,c)

 for all r ∈ rangeFieldNames(C2):
 rangeFieldType(C2, r) = rangeFieldType(C1, r)

 nullSet(C2) = nullSet(C1)

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C2, r) = interpolationDefault(C1, r)

 for all r ∈ rangeFieldNames(C2):

 p. 55

 interpolationSet(C2, r) = interpolationSet(C1, r)

10.3.28 coverageConstExpr
The coverageConstExpr element allows to indicate a coverage constant inline, as
part of the expression. Its extent is defined in the header, followed by a list of the cell
values. Cell values have to be coherent in number (matching with the extent defined
in the header) and in range type, that is: all range field values must be able to be cast
into one of the admissible range field data types defined in Table 4.

This coverage has no other CRS associated beyond the abovementioned image CRS;
further, it has no null values and interpolation methods associated. Finally, all other
metadata are undefined. To set specific metadata for this new coverage the setMata-
dataExpr (Subclause 10.3.9) is available.

NOTE This constructor is useful whenever a small coverage is used in the context of a request.

Let

f be a fieldName,
d be an integer with d>0,
ti be axisTypes for 1≤i≤d, where only axis type abstract may occur more
than once,
namei be pairwise distinct identifiers for 1≤i≤d, which additionally, in the
request on hand, are not used already as a variable in this expression’s scope,
loi and hii be integers for 1≤i≤d with loi ≤ hii,
V be a scalarExpr possibly containing occurrences of namei.

Then,

For any coverageExpr C
where
 C = coverage f
 over t1 name1 in (lo1,hi1),
 …,
 td named in (lod,hid)
 values V

C is defined as follows:

Coverage constituent Changed?

 identifier(C) = “” (empty string) X

 for all p ∈ imageCrsDomain(C):
 value(C, p) = V’
where expression V’ is obtained from expression V by substitut-
ing all occurrences of namei by v where (namei,v)∈p

X

 imageCrs(C) = c0 X

 p. 56

(i.e., the WCPS standard image CRS, see Clause 7)

 imageCrsDomain(C) is set to a d-dimensional cube with axis
names name1…named where the extent of axis namei ranges
from loi to hii (including these boundary values).

X

 axisSet(C2) = axisSet(C1)

 for all a ∈ axisSet(C2):
 crsSet(C, a) = {}
 axisType(C, a) = if a = namei then t1

X

 for all a ∈ axisSet(C), c ∈ crsSet(C, a):
 generalDomain(C, a, c) = undefined4

X

 for r ∈ { f },
 rangeFieldType(C,r) = type(V)
 i.e., the single range field’s type is equal to the result type of
expression V

X

 nullSet(C) = {} X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C, r) = none

X

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C, r) = {}

X

10.3.29 coverageConstructorExpr
The coverageConstructorExpr element allows to create a d-dimensional coverage
for some d≥1.

The domain definition consists, for each dimension, of a unique axis name plus lower
and upper bound of the coverage, expressed in a fixed image CRS and using integer
coordinates; for this image CRS one of the identifiers listed in [05-096r1] Table 1
shall be used.

The coverage’s content is defined by a general expression. The result type of the ex-
pression defining the contents also determines the coverage range type.

This coverage has no other CRS associated beyond the abovementioned image CRS;
further, it has no null values and interpolation methods associated. Finally, all other
metadata are undefined. To set specific metadata for this new coverage the setMata-
dataExpr (Subclause 10.3.9) is available.

NOTE This constructor is useful

4 Note that, due to the empty crsSet, this “loop” anyway will not be “entered”.

 p. 57

� whenever the coverage is too large to be described as a constant or

� when the coverage's cell values are derived from some other source (such as a histogram
computation, see example below).

Let

f be a fieldName,
d be an integer with d>0,
ti be axisTypes for 1≤i≤d, where only axis type abstract may occur more
than once,
namei be pairwise distinct identifiers for 1≤i≤d, which additionally, in the
request on hand, are not used already as a variable in this expression’s scope,
loi and hii be integers for 1≤i≤d with loi ≤ hii,
V be a scalarExpr possibly containing occurrences of namei.

Then,

For any coverageExpr C
where
 C = coverage f
 over t1 name1 in (lo1,hi1),
 …,
 td named in (lod,hid)
 values V

C is defined as follows:

Coverage constituent Changed?

 identifier(C) = “” (empty string) X

 for all p ∈ imageCrsDomain(C):
 value(C, p) = V’
where expression V’ is obtained from expression V by substitut-
ing all occurrences of namei by v where (namei,v)∈p

X

 imageCrs(C) = c0
(i.e., the WCPS standard image CRS, see Clause 7)

X

 imageCrsDomain(C) is set to a d-dimensional cube with axis
names name1…named where the extent of axis namei ranges
from loi to hii (including these boundary values).

X

 axisSet(C2) = { name1 ,…, named } X

 for all a ∈ axisSet(C):
 crsSet(C, a) = {}
 axisType(C, a) = if a = namei then t1

X

 p. 58

for all a ∈ axisSet(C), c ∈ crsSet(C, a):
 generalDomain(C, a, c) = undefined5

X

 for r ∈ { f },
 rangeFieldType(C,r) = type(V)
 i.e., the single range field’s type is equal to the result type of
expression V

X

 nullSet(C) = {} X

 for all r ∈ rangeFieldNames(C2):
 interpolationDefault(C, r) = none

X

 for all r ∈ rangeFieldNames(C2):
 interpolationSet(C, r) = {}

X

Example The expression below computes a 256-bucket histogram over some coverage C of un-
known domain and dimension:

coverage bucket in [0 : 255]
values count(C = bucket)

10.3.30 condenseExpr
A condenseExpr is either a reduceExpr (see Subclause �) or a generalCondense-
Expr (see Subclause 10.3.31). It takes a coverage and summarizes its values using
some summarization function. The value returned is scalar.

10.3.31 generalCondenseExpr
The general generalCondenseExpr consolidates cell values of a coverage along se-
lected axes to a scalar value based on the condensing operation indicated. It iterates
over a given domain while combining the result values of the scalarExprs through
the condenseOpType indicated.

Any summarisation function s() is admissible for a generalCondenseExpr over some
coverage if it has the following properties:

� s() is a binary function between values of the coverage range type;

� s() is commutative and associative.

Example Binary “+” on floating point numbers is admissible for a condenser on a float coverage,
while binary “-“ is not.

Let

5 Note that, due to the empty crsSet, this “loop” anyway will not be “entered”.

 p. 59

op be a condenseOpType,
d be some integer with d>0,
namei be pairwise distinct identifiers which additionally, in the request on
hand, are not used already as a variable in this expression’s scope,
loi and hii be integers for 1≤i≤d with loi ≤ hii,
P be a booleanExpr possibly containing occurrences of namei,
V be a scalarExpr possibly containing occurrences of namei
where
 1≤i≤d.

Then,

For any scalarExpr S
where
 S = condense op
 over name1 in [lo1:hi1],
 …,
 named in [lod:hid]
 [where P]
 using V

S is constructed as follows:

Let S = neutral element of type(V);
for all name1 ∈ {lo1,… ,hi1}
 for all name2 ∈ {lo2,… ,hi2}
 …

 for all named ∈ {lod,… ,hid}
 let predicate P’ be obtained from expression P
 by substituting all occurrences of namei by v
 where (namei,v)∈p;
 if (P’)
 then
 let V’ be obtained from expression V
 by substituting all occurrences of namei by v
 where (namei,v)∈p;
 S = S op value(V’);
return S

Null values encountered shall be treated according to the :

- if at least one non-null value is encountered in the repeated evaluation of V,
then all null values shall be ignored;

- if V is not evaluated at least once, or if there are only null-valued input values,
then the overall result shall be null.

Example For a filter kernel k, the condenser must summarise not only over the cell under inspection,
but also some neighbourhood. The following applies a filter kernel to some coverage C:

 p. 60

coverage x in imageCrsDomain(C)
 values condense +
 over y in imageCrsDomain(k)
 using C[x+y] * k[y]

where k is a 3x3 matrix like

1 3 1
0 0 0
-1 -3 -1

NOTE See coverageConstExpr for a way to specify the k matrix.

NOTE Condensers are heavily used, among others, in these two situations:

� To collapse Boolean-valued coverage expressions into scalar Boolean values so that they can
be used in predicates.

� In conjunction with the coverageConstructorExpr (see Subclause 0) to phrase high-level
imaging, signal processing and statistical operations.

NOTE The additional expressive power of condenseExpr over reduceExpr is twofold:

� A WCPS implementation may offer further summarisation functions.

� The condenseExpr gives explicit access to the coordinate values; this makes summarisation
considerably more powerful (see example below).

10.3.32 reduceExpr
A reduceExpr element derives a summary value from the coverage passed; in this
sense it “reduces” a coverage to a scalar value. A reduceExpr is either an add, avg,
min, max, count, some, or all operation.

 p. 61

Table 6 – reduceExpr definition via generalCondenseExpr
(a is a numeric, b a Boolean coverageExpr)

reduceExpr definition Meaning

add(a) =
 condense +
 over x in sdom(a)
 using a[x]

sum over all cells in a

avg(a) =
 add(a) /
 | imageCrsDomain(a) |

Average of all cells in a

min(a) =
 condense min
 over x in sdom(a)
 using a[x]

Minimum of all cells in a

max(a) =
 condense max
 over x in sdom(a)
 using a[x]

Maximum of all cells in a

count(b) =
 condense +
 over x in sdom(b)
 where b[x]
 using 1

Number of cells in b

some(b) =
 condense or
 over x in sdom(b)
 using b[x]

is there any cell in b with value true?

all(b) =
 condense and
 over x in sdom(b)
 using b[x]

do all cells of b have value true?

10.4 Expression evaluation
This Sublause defines additional rules for ProcessCoverage expression evaluation.

10.4.1 Evaluation sequence
A Web Coverage Processing Server shall evaluate coverage expressions from left to
right.

 p. 62

10.4.2 Nesting
A Web Coverage Processing Server shall allow to nest all operators, constructors, and
functions arbitrarily, provided that each sub-expression's result type matches the re-
quired type at the position where the sub-expression occurs. This holds without limi-
tation for all arithmetic, Boolean, String, and coverage-valued expressions.

10.4.3 Parentheses
A Web Coverage Processing Server shall allow use of parentheses to enforce a par-
ticular evaluation sequence.

Let

C1 and C2 be coverageExprs

Then,

For any coverageExpr C2
where
 C2 = (C1)

C2 is defined as yielding the same result as C1.

Example C * (C > 0)

10.4.4 Operator precedence rules
In case of ambiguities in the syntactical analysis of a request, operators shall have the
following precedence (listed in descending strength of binding):

� Range field selection, trimming, slicing

� unary –

� unary arithmetic, trigonometric, and exponential functions

� *, /

� +, -

� <, <=, >, >=, !=, =

� and

� or, xor

� ":" (interval constructor), condense, marray

� overlay

In all remaining cases evaluation is done left to right.

 p. 63

10.4.5 Range type compatibility and extension
A range type t1 is said to be cast-compatible with a range type t2 iff the following
conditions hold:

� Both range types, t1 and t2, have the same number of field elements, say d;

� For each range field element position i with 1≤i≤d, the ith range field type
f1,i of t1 is cast-compatible with the ith range field type f2,i of t2.

A range field type f1 is said to be cast-compatible with a range field type f2 iff f2
can be cast to f1, whereby casting of f2 to f1 is defined as looking up f2 in Table 7
and replacing it by its right-hand neighbour type or, if it is the last type in line, by the
first type of the next line. This is repeated until either f1 is matched, or the end of the
Table 7 is reached. Type f1 can be cast to type f2 if the casting procedure terminates
with finding t2, otherwise the cast is not possible.

Table 7 – Type extension sequence.

Type extension rules

Boolean > short

short > Boolean

Boolean > unsigned short

unsigned short > Boolean

short > int

short > unsigned int

unsigned short > int

unsigned short > unsigned int

int > long

int > unsigned long

unsigned int > long

unsigned int > unsigned long

long > float

float > double

float > complex

double > complex2

complex > complex2

Example For three single-field coverages F, I, and B with range types float, integer, and
Boolean, resp., the result type of the following expression is float:

F + I + B

Extending Boolean to (unsigned) short shall map false to 0 and true to 1.

 p. 64

Example For a Boolean single-field coverage B, and an integer single-field coverage I, the follow-
ing expression will evaluate to some integer value:

count_cells(I * B)

Before executing any binary operation where the two operands are of different type a
cast operation shall be attempted to achieve equal types.

If a cast is attempted or implicitly needed, but not possible according to the above
rules, then an exception shall be reported.

NOTE The cast operation is the same as in programming languages and database query languages.

10.4.6 Evaluation exceptions
Whenever a coverage expressions cannot be evaluated according to the rules specified
in Clauses 10.3 and 10.4, the Web Coverage Processing Server shall respond with an
exception.

Example The following expression will lead to an exception when used in a ProcessCoverage re-
quest (reasons: division by zero; square root of a negative number):

C / 0

sqrt(- abs(C))

10.5 ProcessCoverage encoding
A ProcessCoverage request shall contain exactly one valid WCPS expression, en-
coded in one of the structures as described in Subclause 10.5.1.

The server shall answer with a response as described in Subclause 10.5.2.

10.5.1 Request encodings
A WCPS server may support KVP request encoding, it shall support XML request
encoding, and it may support SOAP request encoding. If SOAP request encoding is
supported then the server shall also support SOAP response encoding.

10.5.1.1 KVP request encoding

The key-value pair encoding allows clients to use the HTTP GET method for trans-
mitting ProcessCoverage requests.

Table 8 specifies the complete ProcessCoverage Request.

 p. 65

Table 8 – The ProcessCoverage Request expressed as Key-Value Pairs
URL Component Description Multiplicity

http://server_address/path/script? URL of WCS server. Required
SERVICE=WCPS Service name. Must be “WCPS”. Required
VERSION=m.n.p Request protocol version, m, n, p being non-

negative integer numbers.
Required

REQUEST=ProcessCoverage Name of the request. Must be “ProcessCover-
age”.

Required

RESULT=expr The expression describing the result cover-
age(s) derived from the coverage offering.
Must conform with Subclause 10.5.1.1.3.

Required

EXCEPTIONS=
application/vnd.ogc.se_xml

The format in which exceptions are to be re-
ported by the server. The currently only al-
lowed format is XML.
Default: application/vnd.ogc.se_xml

Optional

(Vendor-specific parameters) Default: none Optional

10.5.1.1.1 SERVICE=WCPS / VERSION=version

The SERVICE parameters is fixed to the string “WCPS” ; any upper/lower case com-
bination may be used. The VERSION parameter shall refer to the WCPS protocol
version the server implements.

10.5.1.1.2 REQUEST=ProcessCoverage

The Basic Service Elements clause defines this parameter. For ProcessCoverage, the
value "ProcessCoverage" shall be used; any upper/lower case combination may be
used.

10.5.1.1.3 RESULT=expr

The RESULT argument is a valid WCPS expression, in the abstract syntax as speci-
fied in Subclause 10.3 and with all characters which are not allowed in URLs properly
escaped. For the URL encoding the pertaining IETF rules [6] shall be used.

10.5.1.1.4 EXCEPTIONS

A Web Coverage Processing Service shall offer the exception reporting format appli-
cation/vnd.ogc.se_xml by listing it in its GetCapabilities XML response. The entire
MIME type string in Capability / Exceptions / Format is used as the value of the
EXCEPTIONS parameter.

Errors are reported using Service Exception XML, as specified in Subclause B.3. This
is the default exception format if none is specified in the request.

10.5.1.2 XML request encoding

The XML encoding allows clients to use the HTTP GET or POST method for trans-
mitting ProcessCoverage requests. See Annex B for the XML schema.

 p. 66

10.5.1.3 SOAP request encoding

The SOAP encoding allows clients to use the SOAP [] protocol for communication
with the server. See Annex E for the SOAP transfer definitions.

10.5.2 Response encodings
The response to a valid ProcessCoverage request shall consist of one of the follow-
ing alternatives:

� A coverage, encoded in a particular data format, or a sequence of encoded
coverages;

� A record of values, or a sequence of such value records;

� A scalar numeric value, or a sequence of such values.

In an HTTP environment, the returned value shall have a Content-type entity header
that matches the format of the return value.

10.5.2.1 Response structure

The encoding of a ProcessCoverage response consists of an XML structure plus, if
URL forwarding has been specified for the result provision using the store() func-
tion (see Subclause 10.3.4), of one or more data files accessible through the URLs
communicated by the server. The XML response type is ProcessCoverage-
ResponseType, defined in schema file wcpsProcessCoverage.xsd (see Annex B).

Depending on the response type, the response to a WCPS request shall be one of the
following:

� For an encoded coverage or a sequence of encoded coverages: a response as
specified in WCS [4] Subclause 7.5.

� For an encoded coverage or a sequence of encoded coverages where function
store() was used in the request: an XML response of type Process-
CoverageResponseUrlType containing a sequence of URLs where each
URL refers to one response list coverage element, in proper sequence.

� For a scalar numeric value, or a sequence of such values (i.e., non-coverage
results): an XML structure of type ProcessCoverageResponseScalar-
Type.

10.5.2.2 Exceptions

An invalid ProcessCoverage request shall yield an error output, either as a WCPS
exception reported in the requested Exceptions format (in case of a KVP or XML re-
quest), or as a SOAP Fault message (in case of a SOAP request), or as a network pro-
tocol error response.

A Web Coverage Processing server throwing an exception shall adhere to the value of
the Exceptions parameter. Nonetheless, a Web Coverage Processing server may, due

 p. 67

to circumstances beyond its control, return nothing (this might result from the HTTP
server’s behavior caused by a malformed request, by an invalid HTTP request, by
access violations, or any of several other conditions). WCPS clients should be pre-
pared for this eventuality.

 p. 68

Annex A
(normative)

WCPS Abstract Syntax

A.1 Overview

The WCPS expression syntax is described below in EBNF grammar syntax according
to [6].

Boldface tokens represent literals which appear as is in a valid WCPS expression
(“terminal symbols”), tokens in italics represent sub-expressions to be substituted
according to the grammar production rules (“non-terminals”). Any number of
whitespace characters (blank, tabulator, newline) may appear between tokens, includ-
ing none.

Meta symbols used are as follows:

- brackets (“[…]”) denote optional elements which may occur or be left out;

- an asterisk (“*”) denotes that an arbitrary number of repetitions of the follow-
ing element can be chosen, including none at all;

- a vertical bar (“|”) denotes alternatives from which exactly one must be cho-
sen;

- Double slashes (“//”) begin comments which continue until the end of the
line.

A.2 WCPS syntax

coverageListExpr:
 for variableName in (coverageList)
 *(, variableName in (coverageList))
 [where booleanScalarExpr]
 return processingExpr

coverageList:
 coverageName *(, coverageName)

processingExpr:
 encodedCoverageExpr
 | storeExpr
 | scalarExpr

encodedCoverageExpr:
 encode (coverageExpr, formatName)
 | encode (coverageExpr, formatName, extraParams)

formatName:
 string

 p. 69

extraParams:
 string

storeExpr:
 store (encodedCoverageExpr)

scalarExpr:
 getMetaDataExpr
 | generalCondenseExpr
 | booleanScalarExpr
 | numericScalarExpr
 | (scalarExpr)

getMetaDataExpr:
 identifier (coverageExpr)
 | imageCrs (coverageExpr)
 | imageCrsDomain (coverageExpr)
 | crsSet (coverageExpr)
 | generalDomain(coverageExpr)
 | nullDefault (coverageExpr)
 | nullSet(coverageExpr)
 | interpolationDefault (coverageExpr , fieldName
)
 | interpolationSet (coverageExpr , fieldName)

booleanScalarExpr:
 booleanConstant
 | not booleanScalarExpr
 | booleanScalarExpr and booleanScalarExpr
 | booleanScalarExpr or booleanScalarExpr
 | booleanScalarExpr xor booleanScalarExpr

numericScalarExpr:
 integerConstant
 | floatConstant
 | - numericScalarExpr
 | + numericScalarExpr
 | numericScalarExpr + numericScalarExpr
 | numericScalarExpr - numericScalarExpr
 | numericScalarExpr * numericScalarExpr
 | numericScalarExpr / numericScalarExpr
 | abs (numericScalarExpr)
 // an implementation may extend this with further numeric operations

coverageExpr:
 coverageName
 | setMetaDataExpr
 | inducedExpr
 | subsetExpr
 | crsTransformExpr
 | scaleExpr
 | coverageConstExpr
 | coverageConstructorExpr
 | (coverageExpr)

setMetaDataExpr:
 | setNullDefault (coverageExpr , rangeValue)

 p. 70

 | setNullSet (coverageExpr ,
 { [rangeValue *(, rangeValue)] })
 | setInterpolationDefault (coverageExpr ,
fieldName
 interpolationMethod)
 | setInterpolationSet (coverageExpr , fieldName ,
 { [interpolationMethod
 *(, interpolationMethod)] })
 | setCrsSet (coverageExpr ,
 { [crsName *(, crsName)] })

inducedExpr:
 | unaryInducedExpr
 | binaryInducedExpr

unaryInducedExpr:
 unaryArithmeticExpr
 | exponentialExpr
 | trigonometricExpr
 | booleanExpr
 | castExpr
 | fieldExpr

unaryArithmeticExpr:
 + coverageExpr
 | - coverageExpr
 | sqrt (coverageExpr)
 | abs (coverageExpr)

exponentialExpr:
 exp (coverageExpr)
 | log (coverageExpr)
 | ln (coverageExpr)

trigonometricExpr:
 sin (coverageExpr)
 | cos (coverageExpr)
 | tan (coverageExpr)
 | sinh (coverageExpr)
 | cosh (coverageExpr)
 | tanh (coverageExpr)
 | arcsin (coverageExpr)
 | arccos (coverageExpr)
 | arctan (coverageExpr)

booleanExpr:
 not coverageExpr
 | bit (coverageExpr , integerExpr)

castExpr:
 (cellType) coverageExpr

cellType:
 bool
 | char
 | unsigned char
 | short

 p. 71

 | unsigned short
 | long
 | unsigned long
 | float
 | double
 | complex
 | complex2

fieldExpr:
 coverageExpr . fieldName

binaryInducedExpr:
 | coverageExpr binaryInducedOp coverageExpr
 | coverageExpr binaryInducedOp rangeValue
 | rangeValue binaryInducedOp coverageExpr

binaryInducedOp:
+
*
/
and
or
xor
=
<
>
<=
>=
!=
overlay

subsetExpr:
 | trimExpr
 | sliceExpr
 | extendExpr

trimExpr:
 coverageExpr [axisIntervalList]
 | trim (coverageExpr , axisIntervalList)

sliceExpr:
 coverageExpr [axisPointList]
 | slice (coverageExpr , axisPointList)

extendExpr:
 extend (coverageExpr , axisIntervalList)

scaleExpr:
 scale (coverageExpr , axisIntervalList ,
 fieldInterpolationList)

crsTransformExpr:
 crsTransform (coverageExpr , axisIntervalList ,
 fieldInterpolationList)

 p. 72

axisIntervalList:
 { axisIntervalElement *(, axisIntervalElement) }

axisIntervalElement:
 axisName [: crsName] (axisPoint : axisPoint)

axisPointList:
 { axisPointElement *(, axisPointElement) }

axisPointElement:
 axisName [: crsName] (axisPoint)

axisPoint:
 integerConstant
 | floatConstant
 | stringConstant
 // for time values: cf. ISO 8601:2000 [10], WCS [4] Table 16, 17

axisCrsList:
 { axisCrsElement *(, axisCrsElement) }

axisCrsElement:
 axisName : crsName

fieldInterpolationList:
 { fieldInterpolationListElement
 *(, fieldInterpolationListElement) }

fieldInterpolationListElement:
 fieldName : interpolationMethod

interpolationMethod: // taken from WCS [4]
 (interpolationType : nullResistance)

interpolationType: // taken from WCS [4] Table I.7
 nearest
 | linear
 | quadratic
 | cubic

nullResistance: // taken from WCS [4]
 full
 | none
 | half
 | other

coverageConstructorExpr:
 coverage fieldName
 over variableList
 values scalarExpr

variableList:
 axisType variableName
 in (integerExpr : integerExpr)
 *(, axisType variableName
 in (integerExpr : integerExpr))

 p. 73

axisType:
 x
 | y
 | z
 | time
 | abstract

condenseExpr:
 reduceExpr
 | generalCondenseExpr

reduceExpr:
 all (coverageExpr)
 | some (coverageExpr)
 | count (coverageExpr)
 | add (coverageExpr)
 | avg (coverageExpr)
 | min (coverageExpr)
 | max (coverageExpr)

generalCondenseExpr:
 condense condenseOpType
 over variableList
 [where booleanScalarExpr]
 using scalarExpr

condenseOpType:
 +
 | *
 | max
 | min
 | and
 | or

coverageName:
 name

variableName:
 name

crsName:
 name // containing a valid CRS name

axisName:
 name

fieldName:
 name // as defined in WCS [4] Table 19

rangeValue:
 structuredLiteral
 | atomicLiteral

structuredLiteral:
 { rangeValueList }
 | struct { rangeValueList }

 p. 74

rangeValueList:
 rangeValue *(, rangeValue)

atomicLiteral:
 booleanLiteral
 | integerLiteral
 | floatLiteral
 | complexLiteral
 | stringLiteral

complexLiteral:
 complex (floatLiteral , floatLiteral)

A identifier shall be a consecutive sequence consisting of decimal digits, upper case
alphabetical characters, lower case alphabetical characters, underscore (“_”), and
nothing else. The length of an identifier shall be at least 1, and the first character shall
not be a decimal digit.

NOTE WCS [4] allows more freedom in the choice of identifiers; for the sake of simplicity this is
tightened for now, but may be adapted to the WCS identifier definition in a future version of this stan-
dard.

A booleanLiteral shall represent a logical truth value expressed as one of the
literals “true” and “false” resp., whereby upper and lower case characters shall not be
distinguished.

An integerLiteral shall represent an integer number expressed in either decimal,
octal (with a “0” prefix), or hexadecimal notation (with a “0x” or “0X” prefix).

A floatLiteral shall represent a floating point number following the syntax of the
Java programming language.

A stringLiteral shall represent a character sequence expressed by enclosing it
into double quotes (‘”´).

 p. 75

Annex B
(normative)

WCPS XML Schemas

B.1 GetCapabilities request Schema

See file wcpsCapabilities.xsd

B.2 GetCapabilities response schema

See file wcpsCapabilities.xsd

B.3 DescribeCoverage request schema

See file wcpsDescribeCoverage.xsd

B.4 DescribeCoverage response schema

See file wcpsDescribeCoverage.xsd

B.5 ProcessCoverage request schema

See file wcpsProcessCoverage.xsd

B.6 Service exception schema

See file wcpsException.xsd.

 p. 76

Annex C
(normative)

UML Diagrams

C.1 Introduction

This annex provides a UML model of the WCS interface, using the OGC/ISO profile
of UML summarized in Subclause 5.2 of the OWS Common [OGC 05-008].

The UML model of WCPS is based on the model of WCS [4].

- to be provided -

 p. 77

Annex D
(normative)

Conformance

D.1 Introduction

Specific conformance tests for a Web Coverage Processing Service will be added in a
future revision of this specification. At the moment, a WCS implementation must sat-
isfy the following system characteristics to be minimally conformant with this speci-
fication:

a) WCPS Clients and servers must support the GetCapabilities, DescribeCover-
age, and ProcessCoverage operations.

b) WCPS clients must issue GetCapabilities requests conforming to WCS [4].

c) WCPS servers must respond to a GetCapabilities request with an XML docu-
ment that conforms to WCS [4].

d) WCPS clients must issue DescribeCoverage requests conforming to WCS [4].

e) WCPS servers must respond to a DescribeCoverage request with an XML
document that conforms to WCS [4].

f) WCPS clients must issue ProcessCoverage requests in Key-Value Pair (KVP)
or XML form. ProcessCoverage KVP requests must conform to Subclause
10.5.1.1. ProcessCoverage XML requests must conform to Subclause10.5.1.2,
and must be valid against the XML Schema definition in Subclause A.5.

g) WCPS servers must be able to respond to a ProcessCoverage operation with
an XML document that conforms to the WCS GetCoverage response ([4] Sub-
clause 10.3).

h) A WCS server must be able to deliver responses which are not exceptions ac-
cording to the functionality specified in this standard and on the data provided
by its GetCapbilities and DescribeCoverage responses without any vendor
specific parameters in the requests.

i) All paragraphs in the normative clauses of this specification that use the key-
words "required", "shall", and "shall not" must be satisfied.

 p. 78

Annex E
(normative)

SOAP transfer

NOTE This section is copied from WCS [4], thus ensuring compatibility between WCPS and
WCS.

All compliant WCS servers may implement SOAP 1.2 transfer of all WCS operation
requests and responses, using the XML encodings specified in the body of this docu-
ment. When SOAP is implemented, the SOAP Request-Response message exchange
pattern shall be used with the HTTP POST binding.

For SOAP transfer, each XML-encoded operation request shall be encapsulated in the
body of a SOAP envelope, which shall contain only a body and only this request in
that body. Similarly, each XML-encoded operation response shall be encapsulated in
the body of a SOAP envelope, which shall contain only a body and only this response
in that body. A WCS server shall return operation responses and error messages using
only SOAP transfer when the operation request is sent using SOAP.

All compliant WCS servers shall specify the URLs to which SOAP operation requests
may be sent, within the OperationsMetadata section of a service metadata (Capabili-
ties) XML document, as specified in Subclause 8.3.2.

When an error is detected while processing an operation request encoded in a SOAP
envelope, the WCS server shall generate a SOAP response message where the content
of the Body element is a Fault element containing an ExceptionReport element. This
shall be done using the following XML fragment:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body>

<soap:Fault>
<soap:Code>

<soap:Value>soap:Server</soap:Value>
</soap:Code>
<soap:Reason>

<soap:Text>A server exception was encountered.<soap:Text>
</soap:Reason>
<soap:Detail>

<ows:ExceptionReport>
...

</ows:ExceptionReport>
</soap:Detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

The Code element shall have the Value “soap:server” indicating that this is a server
exception. The Reason element shall have the Text “Server exception was encoun-
tered.” This fixed string is used since the details of the exception shall be specified in
the Detail element using an ows:ExceptionReport element as specified in OWS
Common [OGC 05-008].

 p. 79

Annex F
(informative)

WCPS and WPS

F.1 Introduction

This Subclause describes the relation between WCPS and the OGC Web Processing
Service (WPS) [WPS].

WPS has been designed to offer any sort of GIS functionality to clients across a net-
work, including access to pre-programmed calculations and/or computation models
that operate on spatially referenced data. WPS is targeted at processing both vector
and raster data.

As such, there is an overlap between WCPS (and WCS) on the one hand and WPS on
the other hand.

The difference can roughly be termed as WCPS offering a tight client/server coupling,
while the WPS client/server coupling is loose. Tight coupling in this context means:
the semantics is well defined, and the client knows exactly the mechanisms and their
effects. Loose coupling refers to the WPS SOAP specification of services which for-
malizes only the funciton name and its input and output parameter types, while the
semantics is described textually, i.e., understandable only by humans and not machine
readable. WPS hence is excellently suited to bring online complex legacy code which
is hard to describe in all details. WCPS, on the other hand, offers the potential for
automatic capability detection and understanding, dynamic request composition and
distribution, and hence automatic request cascading.

WCPS requests can be transcoded into WPS requests as described below. Discussion
is limited to WCPS’s ProcessCoverage request; GetCapabilities and DescribeCov-
erage requests are relying on WCS, hence WPS mapping needs to be described there.

NOTE WCPS primarily follows lock-step synchronization with WCS and OWS Common. Fur-
ther, it attempts to be consistent with other OGC standards, such as WPS. Should there ever be a con-
flict between WCS and WPS, then WCPS will follow WCS.

NOTE These are not the only possible mappings, and they are not particularly endorsed – they
serve solely for explanatory purposes. Further, they are not complete.

F.2 Process description

The WPS DescribeProcess operation allows to retrieve information about process
specifics offered by the service. This description includes the input parameters and
formats, plus the output formats.

A WCPS ProcessCoverage process description can be obtained from a WPS server
by using the identifier “ProcessCoverage”.

Example Information about the WCPS ProcessCoverage process can be requested from a suitably
configured WPS KVP encoded for HTTP GET as follows (based on [WPS]):

 p. 80

http://foo.bar/foo?
 Service=WPS&
 Request=DescribeProcess&
 Version=0.4.0&
 Identifier=ProcessCoverage

Example The same in XML encoded for HTTP POST (based on [WPS]):

<?xml version="1.0" encoding="UTF-8"?>
<DescribeProcess service="WPS"
 version="0.4.0"
xmlns="http://www.opengeospatial.net/wps"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/wps
 ..\wpsDescribeProcess.xsd">
 <ows:Identifier>ProcessCoverage</ows:Identifier>
</DescribeProcess>

The DescribeProcess XML response can look as in the example below. The output
description refers to the WCS GetCoverage response and, therefore, needs to be de-
scribed there.

Example A possible DescribeProcess XML response (based on [WPS]):

<?xml version="1.0" encoding="UTF-8"?>
<ProcessDescriptions
 xmlns="http://www.opengeospatial.net/wps"
 xmlns:wps="http://www.opengeospatial.net/wps"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/wps
 ..\wpsDescribeProcess.xsd">
 <ProcessDescription processVersion="1"
 storeSupported="true" statusSupported="false">
 <ows:Identifier>ProcessCoverage</ows:Identifier>
 <ows:Title>Process one or more coverages.</ows:Title>
 <DataInputs>
 <Input>
 <ows:Identifier>Request</ows:Identifier>
 <ComplexData defaultFormat="text/XML"
 defaultEncoding="base64"
 defaultSchema=
 "http://foo.bar/wcps/0.3.0/
 wcpsProcessCoverage.xsd">
 <SupportedComplexData>
 <Format>text/XML</Format>
 <Encoding>UTF-8</Encoding>
 <Schema>
 http://foo.bar/wcps/0.3.0/
 wcpsProcessCoverage.xsd
 </Schema>
 </SupportedComplexData>
 </ComplexData>
 <MinimumOccurs>1</MinimumOccurs>
 </Input>

 p. 81

 </DataInputs>
 <ProcessOutputs>
 <Output>
 <ows:Identifier>
 ProcessCoverageResultList
 </ows:Identifier>
 <ComplexOutput …>
 … <!—to be described by WCS -->
 </ComplexOutput>
 </Output>
 </ProcessOutputs>
 </ProcessDescription>
</ProcessDescriptions>

F.3 Process execution

A WCPS ProcessCoverage request can be mapped to a WPS Execute request. The
corresponding WPS request structure may look as follows.

The WCPS ProcessCoverage request can be described as a WPS Execute response
structure as follows.

Example In WPS KVP notation, a WCPS ProcessCoverage request can be phrased as follows:

http://foo.bar/foo?
 request="Execute"&
 service="WPS"&
 version="0.3.0"&
 Identifier="ProcessCoverage"&
 DataInput=
 "for%20C%20in(A)%20
 return%20
 store(
 encode(C.red%20+%20C.nir,%22tiff%22)
)"

Example An example ProcessCoverage encoding as WPS Execute operation request using XML
encoding is:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Execute service="WPS" version="0.4.0"
 status="false"
 xmlns="http://www.opengeospatial.net/wps"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/wps
 ..\wpsExecute.xsd"
>
 <ows:Identifier>ProcessCoverage</ows:Identifier>
 <DataInputs>
 <Input>
 <ows:Identifier>Request</ows:Identifier>
 </Input>
 </DataInputs>
 <OutputDefinitions>
 <Output>
 <ows:Identifier>

 p. 82

 ProcessCoverageResultList
 </ows:Identifier>
 </Output>
 </OutputDefinitions>
</Execute>

The response of a WCPS ProcessCoverage request adheres to the WCS GetCover-
age resposne and, therefore, needs to be described there.

 p. 83

Bibliography

[1] –unused-

[2] ISO 19103, Geographic Information – Conceptual schema language

[3] OMG Unified Modeling Language Specification (UML), Version 1.5, March
2003, http://www.omg.org/docs/formal/03-03-01.pdf

[4] (Whiteside, Evans 2006) OGC 03-083r8, Web Coverage Service (WCS) Imple-
mentation Specification, Version 1.1.0

[5] European Petroleum Survey Group, EPSG Geodetic Parameter Set, Version 6.8

[6] IETF RFC 2396

[7] IETF RFC 2616

[8] Ritter, G., Wilson, J., Davidson, J.: Image Algebra: An Overview. Computer
Vision, Graphics, and Image Processing, 49(3)1990, pp. 297-331

[9] OGC 05-007r4, Web Processing Service Implementation Specification, Version
0.4.0

[10] ISO 8601:2000, Data elements and interchange formats — Information inter-
change — Representation of dates and times

